Exploiting similarities of user friendship networks across social networks for user identification

社交网络(社会语言学) 社会网络分析 中心性 推荐系统 同性恋 社会化媒体
作者
Yongjun Li,Zhaoting Su,Jiaqi Yang,Congjie Gao
出处
期刊:Information Sciences [Elsevier]
卷期号:506: 78-98 被引量:24
标识
DOI:10.1016/j.ins.2019.08.022
摘要

Abstract User identification has been attracting considerable attention from academia. Due to the uniqueness and difficulty of faking friendship networks, some friendship-based methods have been presented to improve the identification performance. However, the information redundancies in k-hop (k >  1) neighbors and their contributions to user identification have not been fully analyzed in the existing work. Addressing these two issues helps to understand the problem of friendship-based user identification and to propose more effective solutions. In this paper, we first obtain ground-truth friendship networks across three popular social sites; then, we analyze the similarities of k -hop neighbors to fully characterize the information redundancies in the friendship network. We apply these information redundancies in several classifiers to study their contributions to user identification. Furthermore, we apply the friendship-based information redundancies jointly with the display-name-based information redundancies to perform user identification. The experiments show that (1) the similarities related to the 1-hop neighbors contribute to user identification much more than do the other similarities; (2) the information redundancies in the k-hop (k >  1) neighbors are also very useful for user identification; and (3) jointly applying display-name-based information redundancies can provide better performance and improve the universality of the identification method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福尔摩曦发布了新的文献求助30
1秒前
开心发布了新的文献求助10
1秒前
zzzzz完成签到,获得积分10
1秒前
1秒前
赵银志完成签到 ,获得积分10
2秒前
2秒前
郭豪琪完成签到,获得积分10
3秒前
3秒前
麦兜完成签到 ,获得积分10
3秒前
慕青应助wjx采纳,获得10
5秒前
打打应助wjx采纳,获得30
5秒前
JamesPei应助wjx采纳,获得10
5秒前
可爱的函函应助wjx采纳,获得10
5秒前
深情安青应助wjx采纳,获得10
5秒前
在水一方应助wjx采纳,获得10
6秒前
科研通AI2S应助wjx采纳,获得10
6秒前
氮三氟甲基应助wjx采纳,获得10
6秒前
FashionBoy应助wjx采纳,获得30
6秒前
天天快乐应助wjx采纳,获得10
6秒前
ding应助一一采纳,获得10
7秒前
weishen完成签到,获得积分0
7秒前
7秒前
福尔摩曦完成签到,获得积分10
8秒前
8秒前
Feng发布了新的文献求助10
8秒前
聪明可爱小绘理应助高磊采纳,获得10
9秒前
wt完成签到,获得积分10
10秒前
444关闭了444文献求助
11秒前
ZYQ完成签到 ,获得积分10
11秒前
苏苏完成签到,获得积分10
12秒前
12秒前
12秒前
高大黄蜂完成签到,获得积分10
13秒前
新青年应助gmc采纳,获得10
13秒前
勤劳落雁发布了新的文献求助10
13秒前
超帅的从菡完成签到 ,获得积分10
13秒前
leena发布了新的文献求助10
13秒前
斯文败类应助Hh采纳,获得10
14秒前
高大黄蜂发布了新的文献求助10
15秒前
英姑应助guygun采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824