An adaptive inertia weight teaching-learning-based optimization algorithm and its applications

水准点(测量) 惯性 元启发式 计算机科学 局部最优 人口 人工智能 启发式 数学优化 算法 机器学习 趋同(经济学) 数学 物理 社会学 人口学 经典力学 经济 经济增长 地理 大地测量学
作者
Alok Kumar Shukla,Pradeep Singh,Manu Vardhan
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:77: 309-326 被引量:82
标识
DOI:10.1016/j.apm.2019.07.046
摘要

This paper presents an effective metaheuristic algorithm called teaching learning-based optimization which is widely applied to solve the various real-world optimization problems. However, teaching learning-based optimization is rapidly trapped into local optima. To handle this kind of problem, we proposed an improved teaching learning-based optimization algorithm using adaptive exponential distribution inertia weight and altering the position-updating equation. In addition, the logistic map is applied to generate a uniformly distributed population to enhance the quality of the initial populations. The performance of the proposed method is evaluated on a suite of benchmark functions with different characteristics. The efficiency of the proposed technique is also evaluated on six gene expression datasets with the help of three classifiers. The experimental result demonstrates that the proposed method is comparatively useful in adapting the inertia weight in comparison to the existing inertia weight strategies with regards to the quality of solutions, convergence rate along with classification accuracy. In particular gene selection, the proposed method has achieved up to 98% classification accuracy for three out of six datasets with optimal gene subsets for all six datasets and maximum accuracy is achieved as 100% in small round blue-cell tumor dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵凌雪发布了新的文献求助10
刚刚
Ava应助小罗采纳,获得10
1秒前
rr关注了科研通微信公众号
1秒前
1秒前
1秒前
2秒前
哈哈哈完成签到,获得积分10
2秒前
3秒前
syan发布了新的文献求助10
3秒前
韦耀镇发布了新的文献求助10
3秒前
3秒前
英俊的铭应助矜持采纳,获得10
4秒前
一条咸瑜完成签到 ,获得积分10
4秒前
5秒前
fordream发布了新的文献求助10
5秒前
6秒前
zcl应助科研通管家采纳,获得30
6秒前
锦文完成签到,获得积分10
6秒前
hswhswqkdh发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
聪慧砖头应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
wlscj应助科研通管家采纳,获得30
7秒前
FashionBoy应助Lengbo采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得30
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
wwz应助科研通管家采纳,获得10
8秒前
漱泉枕石完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
自觉的碧空完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
uiiii发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262360
求助须知:如何正确求助?哪些是违规求助? 4423393
关于积分的说明 13769561
捐赠科研通 4298047
什么是DOI,文献DOI怎么找? 2358231
邀请新用户注册赠送积分活动 1354555
关于科研通互助平台的介绍 1315726