Multispectral Bathymetry via Linear Unmixing of the Benthic Reflectance

水深测量 多光谱图像 遥感 珊瑚礁 地质学 计算机科学 均方误差 海洋学 数学 统计
作者
Yongming Liu,Ruru Deng,Jun Li,Qing Yan,Longhai Xiong,Qidong Chen,Xulong Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 4349-4363 被引量:17
标识
DOI:10.1109/jstars.2018.2874684
摘要

Bathymetry is important to shallow coral reef management. Remote sensing is one of the most important techniques for mapping bathymetry. For instance, multispectral remote sensing images have been widely used to map bathymetry of coral reefs. These physically based methods, which are able to retrieve bathymetry, water column inherent optical properties (IOPs), and benthic reflectance simultaneously, generally can achieve good bathymetry results. However, there are strong limitations when facing the scenarios of mixing benthic reflectance for bathymetry with multispectral images. In this study, aiming at handling the mixing phenomenon on the use of multispectral remote sensing images for mapping bathymetry, we propose a new unmixing-based method, namely unmixing-based multispectral optimization process exemplar method (UMOPE). The new method incorporates endmember variability with a linear combination of three fixed endmembers and the relaxation of the sum-to-one constrained. UMOPE was validated with two existing methods with in situ data and a WorldView-2 image in the South China Sea. Results from in situ data show that the proposed method performs the best, with the smallest absolute root mean square error (RMSE)(2.26 m) and the best agreement (R 2 = 0.91) between the measured and estimated water depth. Moreover, results from WV-2 imagery demonstrate the superior performance for the UMOPE at depth range from about 9 to 26 m. Furthermore, since the errors from IOPs can propagate to bathymetry, we further take this issue into account by analyzing the rule of influence of bottom on IOPs. Finally, the result of benthic classification map from UMOPE is shown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助善良的路灯采纳,获得10
刚刚
2秒前
司马天寿完成签到,获得积分20
4秒前
4秒前
汤圆完成签到,获得积分10
5秒前
bitahu发布了新的文献求助10
5秒前
希望天下0贩的0应助lixm采纳,获得10
5秒前
科研通AI2S应助敦敦采纳,获得10
6秒前
7秒前
_呱_应助楼台杏花琴弦采纳,获得50
8秒前
咸鱼一号发布了新的文献求助10
8秒前
正经俠发布了新的文献求助10
8秒前
李志远完成签到,获得积分10
9秒前
ghh发布了新的文献求助10
9秒前
10秒前
77paocai完成签到,获得积分10
11秒前
CCL完成签到,获得积分10
12秒前
明亮的绫完成签到 ,获得积分10
12秒前
祖诗云完成签到,获得积分0
13秒前
jiewen发布了新的文献求助10
15秒前
15秒前
Oz完成签到,获得积分10
15秒前
zhukun发布了新的文献求助10
16秒前
16秒前
19秒前
香蕉觅云应助oliver501采纳,获得10
19秒前
正经俠完成签到 ,获得积分20
20秒前
YY完成签到 ,获得积分10
21秒前
清秀灵薇发布了新的文献求助10
21秒前
LZL完成签到 ,获得积分10
21秒前
油焖青椒完成签到,获得积分10
21秒前
不会学术的羊完成签到,获得积分10
22秒前
22秒前
lio完成签到,获得积分20
23秒前
23秒前
FashionBoy应助汤浩宏采纳,获得10
24秒前
wjwless完成签到,获得积分10
25秒前
稀罕你发布了新的文献求助10
25秒前
圣晟胜发布了新的文献求助10
25秒前
寒冷半雪完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849