End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography

肺癌筛查 肺癌 医学 假阳性悖论 计算机断层摄影术 癌症 放射科 医学物理学 人工智能 计算机科学 肿瘤科 内科学
作者
Diego Ardila,Atilla P. Kiraly,Sujeeth Bharadwaj,Bokyung Choi,Joshua J. Reicher,Michael F. Chiang,Daniel Tse,Mozziyar Etemadi,Wenxing Ye,Greg S. Corrado,David P. Naidich,Safal Shetty
出处
期刊:Nature Medicine [Springer Nature]
卷期号:25 (6): 954-961 被引量:1443
标识
DOI:10.1038/s41591-019-0447-x
摘要

With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States1. Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20–43% and is now included in US screening guidelines1–6. Existing challenges include inter-grader variability and high false-positive and false-negative rates7–10. We propose a deep learning algorithm that uses a patient’s current and prior computed tomography volumes to predict the risk of lung cancer. Our model achieves a state-of-the-art performance (94.4% area under the curve) on 6,716 National Lung Cancer Screening Trial cases, and performs similarly on an independent clinical validation set of 1,139 cases. We conducted two reader studies. When prior computed tomography imaging was not available, our model outperformed all six radiologists with absolute reductions of 11% in false positives and 5% in false negatives. Where prior computed tomography imaging was available, the model performance was on-par with the same radiologists. This creates an opportunity to optimize the screening process via computer assistance and automation. While the vast majority of patients remain unscreened, we show the potential for deep learning models to increase the accuracy, consistency and adoption of lung cancer screening worldwide. A convolutional neural network performs automated prediction of malignancy risk of pulmonary nodules in chest CT scan volumes and improves accuracy of lung cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hoshi完成签到 ,获得积分10
1秒前
1秒前
Roey完成签到,获得积分20
2秒前
刘坦苇发布了新的文献求助10
2秒前
2秒前
鲜于夜白发布了新的文献求助10
2秒前
4秒前
哈呵嚯嘿呀完成签到,获得积分10
4秒前
ding应助潦草采纳,获得10
5秒前
5秒前
wanci应助刘坦苇采纳,获得10
6秒前
6秒前
乐观紫发布了新的文献求助10
6秒前
Lee发布了新的文献求助10
8秒前
wrb完成签到,获得积分20
8秒前
10秒前
LM发布了新的文献求助10
10秒前
劲秉应助jy采纳,获得30
11秒前
12秒前
12秒前
影响发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
Return给宋一c的求助进行了留言
15秒前
Lee完成签到,获得积分20
16秒前
17秒前
刘坦苇发布了新的文献求助10
17秒前
17秒前
18秒前
7号lemon发布了新的文献求助10
18秒前
Roey发布了新的文献求助10
18秒前
18秒前
NexusExplorer应助三木采纳,获得10
18秒前
cao_bq完成签到,获得积分10
19秒前
20秒前
慕青应助小白菜采纳,获得10
20秒前
20秒前
潦草发布了新的文献求助10
20秒前
能干的邹发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459542
求助须知:如何正确求助?哪些是违规求助? 3053895
关于积分的说明 9039379
捐赠科研通 2743266
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685