亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hollow Multishelled Structures for Promising Applications: Understanding the Structure–Performance Correlation

纳米技术 计算机科学 吸收(声学) 材料科学 生化工程 工程类 复合材料
作者
Jiangyan Wang,Jiawei Wan,Dan Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (8): 2169-2178 被引量:200
标识
DOI:10.1021/acs.accounts.9b00112
摘要

The unique structural features of hollow multishelled structures (HoMSs) endow them with abundant beneficial physicochemical properties including high surface-to-volume ratio, low density, short mass transport length, and high loading capacity. As a result, HoMSs have been considered as promising candidates for various application areas including energy storage, electromagnetic wave (EW) absorption, catalysis, sensors, drug delivery, etc. However, for a long time, the general and controllable synthesis of HoMSs has remained a great challenge using conventional soft-templating or hierarchical self-assembly methods, which severely limits the development of HoMSs. Fortunately, the sequential templating approach (STA), which was first reported by our group and further developed by others, has been proven to be a versatile method for HoMS fabrication. By using the STA and through accurate physical and chemical manipulation of the synthesis conditions, the diversity of the HoMS family has been enriched in both compositional and geometrical aspects. Benefiting from the flourishing of synthetic methodology, various HoMSs have been fabricated and showed application prospect in diverse areas. However, the structure-performance correlation remained obscure, which hinders the design of optimal HoMSs to achieve the best application performance. This Account aims to explore the correlation between HoMS structural characteristics and their application performance. We first briefly summarize the achievements in the compositional and geometrical manipulation of HoMSs by physically and chemically tuning the synthesis process. Then, we systematically discuss the effect of structural engineering on optimizing performance in various application areas, especially for energy storage, EW absorption, catalysis, sensors, and drug delivery. Specifically, HoMSs with multiple thin shells can provide numerous active sites for energy storage, leading to a higher volumetric energy density than their single-shelled counterparts. The high shell porosity permits electrolyte access to the interior of HoMSs, along with shortened mass transport path through the thin shells, resulting in a high power density. The adequate inner cavity effectively buffers the ion-insertion strain, leading to prolonged cycling stability. For EW absorption, HoMSs with high surface-to-volume ratio can provide many sites for EW-sensitive material loading. The multiple separated shells with small intershell space enable multiple EW reflection and scattering, thus improving EW absorption efficiency. For catalysis and sensors, the increased reaction sites along with the facilitated transport of reactants and products can enhance the activity and sensitivity. The selectivity can be improved by optimizing the pore structure and hydrophobic or hydrophilic properties of the shells. Also the stability is improved with inner shells being protected by exterior ones. For drug delivery, the increased exposed sites and the inner cavity improve the drug loading capacity. The adjustable pore structure along with accurately designed shell composition leads to well-targeted drug release responding to different stimuli at different targeting sites. The multiple separated shells endow HoMSs with sustained drug release step-by-step from inside to outside. These in-depth understandings on the structure-performance correlation can guide the design of ideal HoMSs to satisfy the specific requirements for different application areas, thus further improving the application performance and expanding the HoMSs family.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哦豁拐咯完成签到,获得积分10
2秒前
37秒前
40秒前
所所应助张新悦采纳,获得10
50秒前
赘婿应助Willow采纳,获得10
55秒前
GPTea应助科研通管家采纳,获得20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
楠楠完成签到,获得积分10
2分钟前
chenyimei发布了新的文献求助200
2分钟前
Hello应助楠楠采纳,获得10
2分钟前
失眠问晴完成签到,获得积分10
2分钟前
mama完成签到 ,获得积分10
3分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
不配.应助chenyimei采纳,获得200
5分钟前
chenyimei完成签到,获得积分10
5分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
6分钟前
serenity发布了新的文献求助10
6分钟前
研友_nVWP2Z完成签到 ,获得积分10
6分钟前
Wang完成签到 ,获得积分20
6分钟前
6分钟前
7分钟前
和气生财君完成签到 ,获得积分10
7分钟前
财路通八方完成签到 ,获得积分10
7分钟前
伏城完成签到 ,获得积分10
7分钟前
8分钟前
孙国扬发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
孙国扬完成签到,获得积分10
8分钟前
9分钟前
kuoping完成签到,获得积分0
9分钟前
万能图书馆应助曾泰平采纳,获得10
9分钟前
9分钟前
繁星背后完成签到 ,获得积分10
9分钟前
范振杰完成签到,获得积分10
9分钟前
9分钟前
乐乐应助冷静新烟采纳,获得30
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995896
求助须知:如何正确求助?哪些是违规求助? 4242731
关于积分的说明 13216366
捐赠科研通 4038840
什么是DOI,文献DOI怎么找? 2209922
邀请新用户注册赠送积分活动 1220664
关于科研通互助平台的介绍 1139796