Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries

分割 人工智能 计算机科学 卷积神经网络 背景(考古学) 图像分割 掷骰子 深度学习 模式识别(心理学) 计算机视觉 数学 几何学 生物 古生物学
作者
Deepak Mishra,Santanu Chaudhury,Mukul Sarkar,Arvinder S. Soin
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:66 (6): 1637-1648 被引量:106
标识
DOI:10.1109/tbme.2018.2877577
摘要

Segmentation of anatomical structures in ultrasound images requires vast radiological knowledge and experience. Moreover, the manual segmentation often results in subjective variations, therefore, an automatic segmentation is desirable. We aim to develop a fully convolutional neural network (FCNN) with attentional deep supervision for the automatic and accurate segmentation of the ultrasound images.FCNN/CNNs are used to infer high-level context using low-level image features. In this paper, a sub-problem specific deep supervision of the FCNN is performed. The attention of fine resolution layers is steered to learn object boundary definitions using auxiliary losses, whereas coarse resolution layers are trained to discriminate object regions from the background. Furthermore, a customized scheme for downweighting the auxiliary losses and a trainable fusion layer are introduced. This produces an accurate segmentation and helps in dealing with the broken boundaries, usually found in the ultrasound images.The proposed network is first tested for blood vessel segmentation in liver images. It results in F1 score, mean intersection over union, and dice index of 0.83, 0.83, and 0.79, respectively. The best values observed among the existing approaches are produced by U-net as 0.74, 0.81, and 0.75, respectively. The proposed network also results in dice index value of 0.91 in the lumen segmentation experiments on MICCAI 2011 IVUS challenge dataset, which is near to the provided reference value of 0.93. Furthermore, the improvements similar to vessel segmentation experiments are also observed in the experiment performed to segment lesions.Deep supervision of the network based on the input-output characteristics of the layers results in improvement in overall segmentation accuracy.Sub-problem specific deep supervision for ultrasound image segmentation is the main contribution of this paper. Currently the network is trained and tested for fixed size inputs. It requires image resizing and limits the performance in small size images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq关注了科研通微信公众号
刚刚
联合国ffc完成签到 ,获得积分10
1秒前
xueshu小裁缝完成签到,获得积分20
3秒前
老豆完成签到,获得积分10
4秒前
5秒前
zcious完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
8秒前
owen完成签到,获得积分20
8秒前
dyy发布了新的文献求助10
11秒前
CodeCraft应助高挑的小蕊采纳,获得10
11秒前
11秒前
wiki发布了新的文献求助10
11秒前
12秒前
13秒前
爆米花应助老豆采纳,获得10
13秒前
FloppyWow发布了新的文献求助10
14秒前
moon发布了新的文献求助20
15秒前
隐形曼青应助聪明蛋采纳,获得10
16秒前
科研通AI5应助高贵的天德采纳,获得10
17秒前
科研通AI2S应助xueshu小裁缝采纳,获得10
17秒前
迷路的小牛马完成签到,获得积分10
17秒前
李健应助owen采纳,获得10
17秒前
情怀应助hyh采纳,获得10
17秒前
宋佳顺完成签到,获得积分10
17秒前
h丶小虫发布了新的文献求助10
18秒前
温婉的鸿煊完成签到,获得积分10
19秒前
东北饿霸完成签到,获得积分10
19秒前
柠檬精翠翠完成签到 ,获得积分10
21秒前
21秒前
Hu111完成签到,获得积分10
21秒前
22秒前
舒心的高丽发布了新的文献求助200
23秒前
Mojito完成签到,获得积分10
23秒前
24秒前
25秒前
彭于晏应助dyy采纳,获得10
25秒前
科研通AI5应助645654564采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174