Discrimination of liana and tree leaves from a Neotropical Dry Forest using visible-near infrared and longwave infrared reflectance spectra

长波 遥感 端元 红外线的 高光谱成像 环境科学 藤本植物 反射率 地理 光学 辐射传输 物理 植物 生物
作者
Benoit Rivard,G. Arturo Sánchez-Azofeifa
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:219: 135-144 被引量:26
标识
DOI:10.1016/j.rse.2018.10.014
摘要

Abstract Increases in liana abundance in tropical forests are pervasive threats to the current and future forest carbon stocks. Never before has the need been more evident for new approaches to detect the presence of liana in ecosystems, given their significance as fingerprints of global environmental change. In this study, we explore the use of longwave infrared reflectance (LWIR, 8–11 μm) as a wavelength region for the classification of liana and tree leaves and compare classification results with those obtained using visible-near infrared reflectance data (VIS-NIR, 0.45–0.95 μm). Twenty sun leaves were collected from each of 14 liana species and 21 tree species located at the canopy or forest edge (n = 700) in Santa Rosa National Park, Costa Rica. LWIR and VIS-NIR reflectance measurements were performed on these leaves using a portable calibrated Fourier Transform Infrared Spectroscopy (FTIR) Agilent ExoScan 4100 and a UniSpec spectral analysis system, respectively. The VIS-NIR and LWIR data were first resampled. Then these two spectral libraries were pre-processed for noise reduction and spectral feature enhancement resulting in three datasets for each spectral region as follows: filtered only, filtered followed by extraction of the first derivative, and continuous wavelet transformation (CWT). Data reduction was then applied to these data sets using principal components analysis (PCA). The outputs obtained from the PCA were used to conduct the supervised classification of liana and tree leaves. In total, 21 classifiers were applied to datasets of training and testing to extract the classification accuracy and agreement for liana and tree leaves. The results suggest that the classification of leaves based on LWIR data can reach accuracy values between 66 and 96% and agreement values between 32 and 92%, regardless of the type of classifier. In contrast, the classification based on VIS-NIR data shows accuracy values between 50 and 70% and agreement values between 0.01 and 40%. The highest classification rates of liana and tree leaves were obtained from datasets pre-processed using the CWT or from the extraction of the first derivative and classified using either random forest, k-nearest neighbor, or support vector machine with radial kernel. The results using the LWIR reflectance highlight the potential of this spectral region for the accurate detection of liana extent in tropical ecosystems. Future studies should consider this potential and test the regional monitoring of lianas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuyan完成签到,获得积分10
1秒前
2秒前
liii应助aaaaa采纳,获得10
3秒前
852应助小琦琦采纳,获得10
6秒前
烟花应助斯文冷梅采纳,获得10
6秒前
7秒前
Shennnn完成签到 ,获得积分20
8秒前
9秒前
刘忙完成签到,获得积分10
13秒前
13秒前
英姑应助Kevin Huang采纳,获得10
13秒前
13秒前
yy完成签到,获得积分10
13秒前
14秒前
14秒前
脑洞疼应助岁岁有采纳,获得10
14秒前
77完成签到,获得积分10
14秒前
大个应助干净的夜蓉采纳,获得10
15秒前
请叫我风吹麦浪应助he采纳,获得10
15秒前
惕守完成签到,获得积分10
15秒前
grip发布了新的文献求助10
16秒前
斯文冷梅发布了新的文献求助10
16秒前
fuje发布了新的文献求助10
17秒前
水獭完成签到 ,获得积分10
18秒前
18秒前
19秒前
20秒前
zlqq发布了新的文献求助10
21秒前
科研小白鸽关注了科研通微信公众号
21秒前
21秒前
超级夜香完成签到,获得积分20
22秒前
彭于晏应助忘忧采纳,获得10
23秒前
三颗板牙发布了新的文献求助10
24秒前
TYJ发布了新的文献求助10
24秒前
nuomi完成签到,获得积分10
25秒前
25秒前
小鱼儿发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420