压阻效应
耐久性
聚二甲基硅氧烷
炭黑
材料科学
标度系数
复合材料
多孔性
压力传感器
碳纳米管
制作
机械工程
病理
天然橡胶
工程类
替代医学
医学
作者
Wei Zhai,Quanjun Xia,Kangkang Zhou,Xiaoyan Yue,Miaoning Ren,Guoqiang Zheng,Kun Dai,Chuntai Liu,Changyu Shen
标识
DOI:10.1016/j.cej.2019.04.142
摘要
The achievement of favorable pressure sensor integrated with large linear working range, high sensitivity and excellent response durability is still a great challenge for flexible and wearable piezoresistive materials. In this paper, a facile and scalable strategy is proposed to fabricate a porous foam sensor based on carbon black/polydimethylsiloxane (CB/PDMS). CB particles were decorated onto the surface of the cell walls and some particles were embedded into PDMS matrix after the ultrasonication treatment. The density and porosity of the foam are 0.13 g/cm3 and 76.1%, respectively. A very high linear working range (up to 91%), an excellent response stability, a fast response time (45 ms), and a superior durability (>15000 cycles) are achieved synchronously. Here, the large linear sensing range is mainly related to the nice CB conductive network on the cross-linked PDMS foam and the high modulus and elasticity of the composite material, which ensure the homogeneous deformation of the foam under compression. It is worth noting that the response behavior of CB/PDMS foam is maintained well even in water owing to its excellent hydrophobic property (water contact angle up to 149°), indicating that this material can be used as a waterproof piezoresistive sensor. Our CB/PDMS foam is then assembled as a wearable sensor, and it exhibits nice capability of monitoring human body motions, such as the bending of fingers and elbow, walking, jumping and squatting, etc. The porous foam sensor also has a good oil/water separation ability, showing a multifunctional characteristic.
科研通智能强力驱动
Strongly Powered by AbleSci AI