Integration of organic/inorganic nanostructured materials in a hybrid nanogenerator enables efficacious energy harvesting via mutual performance enhancement

纳米发生器 摩擦电效应 材料科学 电压 能量收集 压电 功率密度 光电子学 纳米技术 机械能 能量转换效率 功率(物理) 电气工程 复合材料 工程类 物理 量子力学
作者
Alam Mahmud,Asif Abdullah Khan,Md Shariful Islam,Peter Voss,Dayan Ban
出处
期刊:Nano Energy [Elsevier]
卷期号:58: 112-120 被引量:28
标识
DOI:10.1016/j.nanoen.2019.01.023
摘要

Recent reports demonstrate that hybrid energy harvesting devices can efficiently convert ubiquitously available but mostly unexploited ambient energies (e.g., mechanical, chemical, thermal, solar) into usable power that can potentially support a new generation of self-powered electronic systems. In this paper, we present a hybrid organic/inorganic nanogenerator on shim substrates, which integrates both piezoelectric and triboelectric components based on inorganic p-n junction ZnO nanostructures and nanostructured organic polytetrafluoroethylene (PTFE) film, respectively. In this design, individual components can be operated independently or concurrently. Moreover, when operated concurrently, component performance is mutually enhanced, enabling more efficient conversion of mechanical energy into electrical energy in a single press-and-release cycle. When triggered with 25 Hz frequency and 1 G acceleration of external force, the piezoelectric nanogenerator (PENG) component generates a peak-to-peak output voltage of 34.8 V, which is ∼3 times higher than its output when it acts alone. Similarly, the triboelectric nanogenerator (TENG) component generates a peak-to-peak output voltage of 356 V under the same conditions, which is higher than its initial output of 280 V when acting alone. The nanogenerator unit produces an average peak output voltage of 186 V, current density of 10.02 µA/cm2, and average peak power density of 1.864 mW/cm2 when operated in the hybrid configuration. The device can even produce an average peak-to-peak voltage of ~160 V from normal hand movement when placed under a wristband fitness tracker, and ~580 V from human walking when placed within the walker's shoe. The device has been demonstrated to charge commercial capacitors up to a few volts within several seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingdong发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
yuan发布了新的文献求助10
2秒前
3秒前
cc完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
一一发布了新的文献求助10
4秒前
领导范儿应助Chridy采纳,获得10
4秒前
5秒前
凤凰山发布了新的文献求助10
5秒前
5秒前
孔雨珍发布了新的文献求助10
5秒前
淡定的思松应助通~采纳,获得10
6秒前
6秒前
明亮的八宝粥完成签到,获得积分10
6秒前
mayungui发布了新的文献求助10
6秒前
大型海狮完成签到,获得积分10
6秒前
搜集达人应助科研菜鸟采纳,获得10
7秒前
雨天有伞完成签到,获得积分10
7秒前
蕾子发布了新的文献求助10
7秒前
7秒前
zhui发布了新的文献求助10
7秒前
wanci应助jxcandice采纳,获得10
7秒前
factor发布了新的文献求助10
7秒前
8秒前
泊声发布了新的文献求助20
8秒前
narthon完成签到 ,获得积分10
8秒前
梦幻完成签到,获得积分10
8秒前
1604531786完成签到,获得积分10
8秒前
研友_LMNjkn发布了新的文献求助10
9秒前
xiao发布了新的文献求助10
9秒前
ww发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794