尺度不变特征变换
散列函数
特征哈希
模式识别(心理学)
计算机科学
稳健性(进化)
局部二进制模式
人工智能
几何变换
图像检索
通用哈希
二进制数
特征提取
计算机视觉
双重哈希
直方图
哈希表
数学
图像(数学)
基因
算术
生物化学
计算机安全
化学
作者
Ping Wang,Aimin Jiang,Yuan Cao,Yuan Gao,Rongjun Tan,Haixia He,Mingrui Zhou
标识
DOI:10.1109/icdsp.2018.8631569
摘要
Image hash functions find extensive applications in content authentication, database search, and digital forensic. Robust image hash has been widely investigated to authenticate the reliability of images transmitted by a trustless channel. In this paper, we propose a novel image hashing algorithm which is robust to content-reserved and multiple manipulations. To achieve the perceptual robustness and sensitivity, the proposed scheme combines scale-invariant feature transform (SIFT) with local binary pattern (LBP). SIFT extracts plenty of descriptors which are robust to geometric distortion and luminance transformation. LBP generates hash values that contain local information and are sensitive to content manipulation. We further investigate the performance of proposed scheme and other existing algorithms via statistical analysis of recognition rate, and the results show that our method outperforms conventional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI