Solvation effect on the ESIPT mechanism of 2-(4′-amino-2′-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine

化学 溶剂化 密度泛函理论 分子内力 激发态 氢键 光化学 含时密度泛函理论 分子轨道 吡啶 势能面 溶剂效应 四氢呋喃 计算化学 溶剂 有机化学 立体化学 分子 原子物理学 物理
作者
Zhe Tang,Ming Lu,Kangjing Liu,Yanliang Zhao,Yutai Qi,Yi Wang,Peng Zhang,Panwang Zhou
出处
期刊:Journal of Photochemistry and Photobiology A-chemistry [Elsevier]
卷期号:367: 261-269 被引量:37
标识
DOI:10.1016/j.jphotochem.2018.08.028
摘要

The excited-state intramolecular proton transfer (ESIPT) dynamics of 2-(4′-Amino-2′-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine (AHPIP-c) has been studied by using density-functional theory and time-dependent density-functional theory method. Three kinds of different polar aprotic solvents, including acetonitrile (strong polar), tetrahydrofuran (weak polar) and methylcyclohexane (non-polar) have been chosen to explore solvent effects on these molecules. The calculated absorption and fluorescence spectra agree well with the experimental results for the three solvents and the dual fluorescence emission mechanism is well explained. The electron density ρ(r) and Laplacian ∇2ρ(r) at the bond critical point (BCP) have been calculated using the Atoms-In-Molecule (AIM) theory, which prove that the intramolecular hydrogen bond (O1H2⋯N3) exists in the S0 state. The geometric parameters and the infrared vibrational spectra in the OH stretching vibrational region have been calculated, which manifests the hydrogen-bond is strengthened in the S1 state. The molecular electrostatic potential surface and frontier molecular orbitals analysis demonstrate that the proton transfer prefer occurring on excited state because of the charge redistribution upon photo-excitation. The results of potential energy curves, further confirm that the proton transfer process is more likely to conduct in the S1 state due to the lower potential energy barrier than that in the S0 state. In addition, we also find that ESIPT reaction is more easily to occur as the solvent polarity decreases. Therefore, we believe that solvent effect could play an important role in controlling excited state behaviors of AHPIP-c molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山栀茶发布了新的文献求助30
1秒前
1秒前
3秒前
3秒前
3秒前
4秒前
JW完成签到,获得积分10
4秒前
5秒前
wangqing发布了新的文献求助20
5秒前
zxcsdfa发布了新的文献求助10
6秒前
开心便当完成签到,获得积分10
6秒前
共享精神应助112233采纳,获得10
7秒前
自由人3号完成签到,获得积分10
7秒前
香菜发布了新的文献求助10
8秒前
wzh发布了新的文献求助10
8秒前
8秒前
独特苡发布了新的文献求助20
9秒前
丘比特应助来活采纳,获得10
9秒前
9秒前
香蕉觅云应助慕苡采纳,获得10
10秒前
威武冷雪发布了新的文献求助30
10秒前
阳光应助香菜采纳,获得10
12秒前
neiltang完成签到,获得积分20
12秒前
yiyi131发布了新的文献求助10
13秒前
杳鸢应助科研通管家采纳,获得50
13秒前
情怀应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
杳鸢应助科研通管家采纳,获得20
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
14秒前
管绯发布了新的文献求助10
15秒前
渊崖曙春应助LeungYM采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476549
求助须知:如何正确求助?哪些是违规求助? 3068193
关于积分的说明 9106870
捐赠科研通 2759699
什么是DOI,文献DOI怎么找? 1514226
邀请新用户注册赠送积分活动 700111
科研通“疑难数据库(出版商)”最低求助积分说明 699301