The Race for Online Reputation: Implications for Platforms, Firms and Consumers

种族(生物学) 声誉 业务 互联网隐私 营销 广告 公共关系 政治学 社会学 计算机科学 法学 性别研究
作者
Mingwen Yang,Eric Zheng,Vijay Mookerjee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3349476
摘要

Online reputation (reflected in consumer ratings) has become a key marketing-mix variable in the digital world. We consider a market consisting of competing firms that participate in a platform such as Expedia or Yelp. Each firm exerts effort to improve its ratings, but in doing so, also influences the mean market rating. The sales of a firm are influenced by its own ratings and the mean rating of the firms in the market. An equilibrium analysis of the mean market rating reveals several insights. A more heterogeneous market (one where the parameters of the firms are very different) leads to a lower mean market rating and higher total profit of the firms in the market. Our results can inform platforms to target certain firms to join: Growing the middle of the market (firms with average ratings) is the best option considering the goals of the platform (increase total profit of the firms) and the other stakeholders, namely, incumbents and consumers. For firms, we find that a firm's profit can increase from an adverse event (such as, a reduction in sales margin, or an increase in the cost of control) depending on how other firms in the market are affected by the event. Our findings are particularly significant for platform owners who could benefit from growing the platform in a strategic manner. We model each firm's decision problem as a stochastic control problem where the objective is to maximize discounted profit over a planning horizon. These control problems are connected through a common market belief that represents the mean rating of the firms in the market. The joint actions of the firms generate a mean market equilibrium. We prove that such an equilibrium exists, is unique, and use a simple algorithm to compute its value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棉花糖发布了新的文献求助10
1秒前
充电宝应助殷勤的斓采纳,获得10
1秒前
1秒前
纪靖雁发布了新的文献求助10
2秒前
2秒前
2秒前
山山而川发布了新的文献求助10
2秒前
大毛关注了科研通微信公众号
3秒前
4秒前
4秒前
迟大猫应助长安采纳,获得10
4秒前
超文献发布了新的文献求助10
6秒前
changjiaren完成签到,获得积分10
6秒前
eso完成签到,获得积分10
7秒前
沿途南行发布了新的文献求助10
7秒前
8秒前
Psccc发布了新的文献求助10
10秒前
青呀青呀乔完成签到,获得积分10
10秒前
传奇3应助尊敬不斜采纳,获得10
10秒前
向聿发布了新的文献求助10
10秒前
10秒前
上官若男应助cccc采纳,获得10
10秒前
星辰大海应助曦子曦子采纳,获得10
11秒前
11秒前
11秒前
12秒前
fairy完成签到,获得积分10
12秒前
12秒前
殷勤的斓发布了新的文献求助10
14秒前
14秒前
思源应助Luhan采纳,获得10
15秒前
早点发SCI完成签到,获得积分10
15秒前
15秒前
搜集达人应助盛夏采纳,获得10
15秒前
16秒前
16秒前
下课聊里的灰色头像完成签到,获得积分10
16秒前
深情安青应助xhxh采纳,获得10
16秒前
危机的河马完成签到,获得积分10
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199