IBSI: an international community radiomics standardization initiative

工作流程 标杆管理 计算机科学 无线电技术 标准化 软件 图像处理 图像配准 医学 数据挖掘 医学物理学 图像(数学) 人工智能 数据库 营销 业务 程序设计语言 操作系统
作者
Mathieu Hatt,Martin Vallières,Dimitris Visvikis,Alex Zwanenburg
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:59: 287-287 被引量:55
摘要

287 Objectives: Radiomics is the high-throughput analysis of medical images for treatment individualization. It conventionally involves the quantification of different characteristics of a region of interest such as a tumor delineated in the image. These characteristics can be intensity measurements (such as mean SUV), volume, geometrical shape and textural features. The lack of standardisation of image features and the use of different software implementations limits the reproducibility of radiomics studies. It is thus a major hurdle for potential clinical translation of radiomics applications. To address this limitation, an international collaboration of 19 teams from 8 countries (Image Biomarkers Standardization Initiative, IBSI, see https://arxiv.org/abs/1612.07003) was initiated to i) establish a comprehensive radiomics workflow description, ii) provide verified definitions of commonly used features and iii) provide benchmarking of features extraction and image processing steps, as well as reporting guidelines. Material and Methods: Phase 1 of the initiative consisted in specifying and benchmarking across all participants more than 350 statistical, morphological and textural features (both in 2D or 3D) using a very simple digital phantom not requiring any image pre-processing steps. In phase 2, we added image pre-processing steps and features were benchmarked on 5 different configurations of a lung cancer patient CT image. Each configuration differed in the workflow of image processing steps, i.e. how the image stack is analyzed (2D: cases 1 and 2; 3D: 3 to 5), the interpolation method (none: 1; bi/trilinear: 2 to 4, tri-cubic: 5) and the grey-levels discretization approach (fixed bin size: 1 and 3; fixed number of bins: 2, 4 and 5). Both phases were iterative as the participants could compare their results with the other teams and update their workflow implementation accordingly. The most frequently contributed value of each feature was selected as its benchmark value. Agreement on a benchmark value was considered to exist if the value was produced by at least 50% of contributing teams (minimum 3), weighed by their overall accuracy in reproducing the benchmark values. Results: Twenty different software implementations across the 19 teams provided features values. In both phases, only a limited number of features were initially in agreement (phase 1: 12.3%, phase 2: 0.5 (0.0-1.4)%). The number of reliable features increased over time as problems were identified and solved, and agreement was achieved for most features (phase 1: 99.4%; phase 2: 96.4 (94.0-97.7)%). The remaining features for which no agreement could be reached were not commonly implemented. Conclusions: We addressed the lack of standardization in radiomics features definition, implementation and image pre-processing steps by providing a digital phantom and reliable benchmark values for most features. Exploiting this provided standard to validate radiomics software used in future studies is recommended to increase the reproducibility of such studies

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助顾北采纳,获得10
1秒前
迅速初柳发布了新的文献求助10
1秒前
tuanheqi应助默默的访旋采纳,获得100
1秒前
Zx完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
5秒前
11秒前
冷淡芝麻发布了新的文献求助20
12秒前
随波逐流发布了新的文献求助10
13秒前
14秒前
15秒前
徐淳完成签到,获得积分20
16秒前
小王好饿完成签到 ,获得积分10
17秒前
高贵魂幽完成签到,获得积分10
17秒前
manchang完成签到 ,获得积分10
17秒前
wei发布了新的文献求助10
17秒前
zpp完成签到 ,获得积分10
20秒前
xiaoyuan给xiaoyuan的求助进行了留言
20秒前
Jager.Z完成签到 ,获得积分10
20秒前
顾北发布了新的文献求助10
21秒前
野鹤完成签到 ,获得积分10
23秒前
CodeCraft应助无悔呀采纳,获得10
26秒前
剪刀石头布完成签到,获得积分10
26秒前
五十一完成签到 ,获得积分10
26秒前
兮棠发布了新的文献求助10
27秒前
28秒前
传统的松鼠完成签到 ,获得积分10
28秒前
28秒前
红宝完成签到,获得积分10
29秒前
呱呱发布了新的文献求助10
32秒前
星辰大海应助xixi采纳,获得10
34秒前
危机的渊思关注了科研通微信公众号
35秒前
38秒前
TiAmo完成签到 ,获得积分10
39秒前
我相信完成签到,获得积分10
40秒前
42秒前
兮棠完成签到 ,获得积分10
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905