水下
计算机科学
残余物
人工智能
计算机视觉
图像复原
卷积神经网络
深度学习
规范化(社会学)
均方误差
算法
图像处理
图像(数学)
数学
地质学
统计
海洋学
社会学
人类学
作者
Peng Liu,Guoyu Wang,Hao Qi,Chufeng Zhang,Haiyong Zheng,Zhibin Yu
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2019-01-01
卷期号:7: 94614-94629
被引量:114
标识
DOI:10.1109/access.2019.2928976
摘要
Owing to refraction, absorption, and scattering of light by suspended particles in water, raw underwater images have low contrast, blurred details, and color distortion.These characteristics can significantly interfere with visual tasks, such as segmentation and tracking.This paper proposes an underwater image enhancement solution through a deep residual framework.First, the cycle-consistent adversarial networks (CycleGAN) is employed to generate synthetic underwater images as training data for convolution neural network models.Second, the very-deep super-resolution reconstruction model (VDSR) is introduced to underwater resolution applications; with it, the Underwater Resnet model is proposed, which is a residual learning model for underwater image enhancement tasks.Furthermore, the loss function and training mode are improved.A multi-term loss function is formed with mean squared error loss and a proposed edge difference loss.An asynchronous training mode is also proposed to improve the performance of the multi-term loss function.Finally, the impact of batch normalization is discussed.According to the underwater image enhancement experiments and a comparative analysis, the color correction and detail enhancement performance of the proposed methods are superior to that of previous deep learning models and traditional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI