摘要
Advanced MaterialsVolume 24, Issue 25 p. 3326-3332 Communication Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network Phillip Lee, Phillip Lee Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorJinhwan Lee, Jinhwan Lee Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorHyungman Lee, Hyungman Lee Nano Sensor and Device Team, Korea Electronics Technology Institute (KETI), Gyeonggi-do, 463-816, KoreaSearch for more papers by this authorJunyeob Yeo, Junyeob Yeo Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorSukjoon Hong, Sukjoon Hong Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorKoo Hyun Nam, Koo Hyun Nam Department of Physics, Ewha Womans University, Seoul, 120-750, Korea.Search for more papers by this authorDongjin Lee, Dongjin Lee School of Mechanical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaSearch for more papers by this authorSeung Seob Lee, Corresponding Author Seung Seob Lee [email protected] Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea.Search for more papers by this authorSeung Hwan Ko, Corresponding Author Seung Hwan Ko [email protected] Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea.Search for more papers by this author Phillip Lee, Phillip Lee Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorJinhwan Lee, Jinhwan Lee Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorHyungman Lee, Hyungman Lee Nano Sensor and Device Team, Korea Electronics Technology Institute (KETI), Gyeonggi-do, 463-816, KoreaSearch for more papers by this authorJunyeob Yeo, Junyeob Yeo Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorSukjoon Hong, Sukjoon Hong Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaSearch for more papers by this authorKoo Hyun Nam, Koo Hyun Nam Department of Physics, Ewha Womans University, Seoul, 120-750, Korea.Search for more papers by this authorDongjin Lee, Dongjin Lee School of Mechanical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, KoreaSearch for more papers by this authorSeung Seob Lee, Corresponding Author Seung Seob Lee [email protected] Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea.Search for more papers by this authorSeung Hwan Ko, Corresponding Author Seung Hwan Ko [email protected] Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, KoreaDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea.Search for more papers by this author First published: 21 May 2012 https://doi.org/10.1002/adma.201200359Citations: 864Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract A highly stretchable metal electrode is developed via the solution-processing of very long (>100 μm) metallic nanowires and subsequent percolation network formation via low-temperature nanowelding. The stretchable metal electrode from very long metal nanowires demonstrated high electrical conductivity (∼9 ohm sq−1) and mechanical compliance (strain > 460%) at the same time. This method is expected to overcome the performance limitation of the current stretchable electronics such as graphene, carbon nanotubes, and buckled nanoribbons. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description adma_201200359_sm_suppl.pdf1.2 MB suppl Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 J. A. Rogers, T. Someya, Y. Huang, Science 2010, 26, 1603. 2 R. F. Service, Science 2003, 301, 909. 3 J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. 2001, 98, 4835. 4 S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, D. Poulikakos, Nanotechnology 2007, 18, 345202. 5 Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S.-I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, J. A. Lewis, Science 2009, 323, 1590. 6 Y. Son, J. Yeo, H. Moon, T. W. Lim, K. H. Nam, C. P. Grigoropoulos, S. Yoo, D.-Y. Yang, S. H. Ko, Adv. Mater. 2011, 23, 3176. 7 H. Pan, S. H. Ko, N. Misra, C. P. Grigoropoulos, Appl. Phys. Lett. 2009, 94, 071117. 8 T. Sekitani, Y. Nouguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468. 9 S. H. Ko, H. Pan, D. Lee, C. P. Grigoropoulos, H. K. Park, Jpn. J. Appl. Phys. 2010, 49, 05EA12. 10 K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, A. Javey, Nat. Mater. 2010, 9, 821. 11 X. Wang, H. Hu, Y. Shen, X. Zhou, Z. Zheng, Adv. Mater. 2011, 23, 3090. 12 D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482. 13 A. A. Argun, A. Cirpan, J. R. Reynolds, Adv. Mater. 2003, 15, 1338. 14 D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, C. Zhou, Nano Lett. 2006, 6, 1880. 15 Z. Yu, X. Niu, Z. Liu, Q. Pei, Adv. Mater. 2011, 23, 3989. 16 G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270. 17 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706. 18 D. C. Hyun, M. Park, C. Park, B. Kim, Y Xia, J. H. Hur, J. M. Kim, J. J. Park, U. Jeong, Adv. Mater. 2011, 23, 2946. 19 M. G. Kang, M. S. Kim, J. S. Kim, L. J. Guo, Adv. Mater. 2008, 20, 4408. 20 A. Kumar, C. Zhou, ACS Nano 2010, 4, 11. 21 J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689. 22 L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cui, ACS Nano 2010, 4, 2955. 23 S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, ACS Nano 2009, 3, 1767. 24 A. Madrria, A. Kumar, F. N. Ishikawa, C. Zhou, Nano Res. 2010, 3, 564. 25 X. Y. Zeng, Q. K. Zhang, R. M. Yu, C. Z. Lu, Adv. Mater. 2010, 22, 4484. 26 A. R. Rathmell, S. M. Bergin, Y-.L. Hua, Z.-Y. Li, B. J. Wiley, Adv. Mater. 2010, 22, 3558. 27 Z. Yu, L. Li, Q. Zhang, W. Lu, Q. Pei, Adv. Mater. 2011, 23, 4453. 28 K. E. Korte, S. E. Skrabalak, Y. Xia, J. Mater. Chem. 2008, 18, 437. 29 C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, B. Gao, Adv. Mater. 2011, 23, 3052. 30 R. Gunawidjaja, H. Ko, C. Jiang, V. V. Tsukruk, Chem. Mater. 2007, 19, 2007. 31 J. H. Yoo, S. I. Oh, M. S. Jeong, J. Appl. Phys. 2010, 107, 094316. 32 A. M. Leach, M. McDowell, K. Gall, Adv. Funct. Mater. 2007, 17, 43. 33 A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, G. M. Whitesides, Adv. Funct. Mater. 2010, 20, 28. Citing Literature Volume24, Issue25July 3, 2012Pages 3326-3332 ReferencesRelatedInformation