铁电性
极化(电化学)
热电性
材料科学
分子开关
二次谐波产生
电场
化学物理
极化密度
拓扑(电路)
压电
光电子学
分子
磁化
化学
光学
物理
有机化学
电介质
物理化学
组合数学
数学
量子力学
激光器
磁场
复合材料
作者
Sachio Horiuchi,Y. Tokunaga,Gianluca Giovannetti,Silvia Picozzi,H. Itoh,Ryo Shimano,Reiji Kumai,Yoshinori Tokura
出处
期刊:Nature
[Springer Nature]
日期:2010-02-11
卷期号:463 (7282): 789-792
被引量:699
摘要
Ferroelectrics are electro-active materials that can store and switch their polarity (ferroelectricity), sense temperature changes (pyroelectricity), interchange electric and mechanical functions (piezoelectricity), and manipulate light (through optical nonlinearities and the electro-optic effect): all of these functions have practical applications. Topological switching of pi-conjugation in organic molecules, such as the keto-enol transformation, has long been anticipated as a means of realizing these phenomena in molecular assemblies and crystals. Croconic acid, an ingredient of black dyes, was recently found to have a hydrogen-bonded polar structure in a crystalline state. Here we demonstrate that application of an electric field can coherently align the molecular polarities in crystalline croconic acid, as indicated by an increase of optical second harmonic generation, and produce a well-defined polarization hysteresis at room temperature. To make this simple pentagonal molecule ferroelectric, we switched the pi-bond topology using synchronized proton transfer instead of rigid-body rotation. Of the organic ferroelectrics, this molecular crystal exhibits the highest spontaneous polarization ( approximately 20 muC cm(-2)) in spite of its small molecular size, which is in accord with first-principles electronic-structure calculations. Such high polarization, which persists up to 400 K, may find application in active capacitor and nonlinear optics elements in future organic electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI