镍
钼
过渡金属
电催化剂
塔菲尔方程
无机化学
材料科学
电化学
电解
氢
化学
冶金
电极
催化作用
物理化学
有机化学
电解质
生物化学
作者
David E. Brown,M.N. Mahmood,Malcolm Man,Anne I. Turner
标识
DOI:10.1016/0013-4686(84)85008-2
摘要
Transition metal electrocatalysts for hydrogen evolution were prepared by thermal decomposition of solutions containing nickel or cobalt and molybdenum, tungsten or vanadium on a metallic substrate and curing the oxide coated substrate under an atmosphere of hydrogen at elevated temperatures. The most active and stable hydrogen evolving cathode, based on a nickel and molybdenum combination, exhibited overvoltages of about 60 mV for over 11,000 h of continuous electrolysis in 30 w/o KOH at 500 mA cm−2 and 70°C. The cathode was prepared by high temperature (ca. 400°C) treatment of a nickel substrate, coated with an aqueous solution containing nickel and molybdenum salts in the atomic ratio 60:40 followed by reduction of the resulting oxides at about 500°C in atmosphere of hydrogen. X-ray diffraction, and thermogravimetric and ESCA measurements, were employed to identify the active component of the nickel-molybdenum system responsible for its electrocatalytic activity. The results indicated that the electrocatalyst is a face centred cubic nickel-molybdenum alloy in which the molybdenum is randomly substituted at the nickel lattice. The electrochemical properties of a number of nickel-molybdenum electrocatalysts (NiMo = 60:40) were determined in the temperature range 20–80°C. Steady state measurements at different temperatures in 30 w/o KOH showed that the electrodes had low apparent activation energies (ca. 5 kcal mol−1) and revealed the presence of two Tafel regions with transfer coefficients of 1.13 and 0.63. The corresponding exchange current densities at 70°C, based on the electrodes geometric areas, were 52 and 150 mA cm−2 respectively. Results of potentiodynamic measurements and preliminary work on hydrogen oxidation are also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI