摘要
Superplastic ceramics and metallic alloys exhibit different trends in tensile ductility in the range where the strain-rate-sensitivity exponent, m, is high (m⩾0.5). The tensile ductility of superplastic metallic alloys (e.g. fine-grained zinc, aluminium, nickel and titanium alloys) is primarily a function of the strain-rate-sensitivity exponent. In contrast, the tensile ductility of superplastic ceramic materials (e.g. zirconia, alumina, zirconia-alumina composites and iron carbide) is not only a function of the strain-rate-sensitivity exponent, but also a function of the parameter ⋗e exp (Qc/RT) where ⋗e is the steady-state strain rate and Qc is the activation energy for superplastic flow. Superplastic ceramic materials exhibit a large decrease in tensile elongation with an increase in ⋗e exp (Qc/RT). This trend in tensile elongation is explained based on a "fracture-mechanics" model. The model predicts that tensile ductility increases with a decrease in flow stress, a decrease in grain size and an increase in the parameter (2γs−γgb), where γs is the surface energy and γgb is the grain boundary energy. The difference in the tensile ductility behavior of superplastic ceramics and metallic alloys can be related to their different failure mechanisms. Superplastic ceramics deform without necking and fail by intergranular cracks that propagate perpendicular to the applied tensile axis. In contrast, superplastic metallic alloys commonly fail by intergranular and transgranular (shearing) mechanisms with associated void formation in the neck region. Les céramiques superplastiques et les alliages métalliques montrent différents comportements de la ductilité en traction dans la gamme où l'exposant de la sensibilité de la vitesse à la contrainte, m, est élevé (m⩾0,5). La ductilité en traction des alliages métalliques superplastiques (par exemple le zinc à grains fins, l'aluminium, le nickel et les alliages de titane) est essentiellement une fonction de l'exposant de la sensibilité de la vitesse de déformation. Par contre, la ductilité en traction de matériaux ceramiques superplastiques (par exemple la zircone, l'alumine, les composites zircone-alumine et le carbure de fer) n'est pas seulement fonction de cet exposant, mais aussi du paramètre ⋗e exp (Qc/RT) où ⋗e est la vitesse de deformation en regime permanent et Qc est l'énergie d'activation de l'écoulement superplastique. Les matériaux céramiques superplastiques montrent une forte décroissance de l'élongation en traction avec l'augmentation de ⋗e exp (Qc/RT). Cette tendance en élongation sous traction est explique en se basant sur un modèle de mécanique de la rupture. Ce modèle prévoit que la ductilité en traction croît lorsque la contrainte d'écoulement ou al taille du grain décroît, et lorsque le paramètre (2γs−γgb), où γs est l'énergie de surface et γgb est l'énergie du joint de grains, décroît. La différence du comportement de ductilité en traction des céramiques superplastiques et des alliages métalliques peut être reliée à leurs mécanismes de rupture différents. Les céramiques superplastiques se déforment sans striction et se cassent par des fissures intergranulaires qui se propagent perpendiculairement à l'axe de traction. A l'inverse, les alliages métalliques superplastiques cassent généralement par des mécanismes de cisaillement intergranulaires et transgranulaires qui sont associés à la formation de cavités dans la région de la striction. Superplastiche Keramiken und metallische Legierungen zeigen unterschiedliche Trends in der Zugduktilität in dem Bereich, in dem der Exponent m der Spannungsempfindlichkeit hoch ist (m⩾0,5). In superplastischen metallischen Legierungen (z.B. feinkörnige Zink-, Aluminium-, Nickel- und Titanlegierungen) hängt sie im wesentlichen von dem Exponenten der Dehnungsempfindlichkeit ab. Dagegen hängt die Zugduktilität superplastischer keramischer Materialien (z.B. Zirkonoxid, Aluminiumoxid, Verbunde daraus und Eisenkarbid) nicht nur von dem Exponenten der Dehnungsempfindlichkeit ab, sondern auch von dem Parameter ⋗e exp (Qc/RT), wobei ⋗e stationäre Dehnungsrate und Qc die Aktivierungsenergie des superplastischen Flieβens ist. Superplastischen keramische Materialien zeigen eine starke Absenkung der Zugverlängerung bei ansteiigendem ⋗e exp (Qrmc/RT). Dieser Trend wird auf der Basis eines "bruchmechanischen" Modelles erklärt. Das Modell sagt voraus, daβ die Zugduktilität zunimmt bei einer Abnahme der Flieβspannung, einer Abnahme in der Korngröβe und einem Anstieg des Parameters (2γs−γgb); hierbei ist γs die Oberflächenenergie, γgb die Korngrenzenergie. Der Unterschied im Verhalten der Zugduktilität von superplastischen Keramiken und metallischen Legierungen kann mit den unterschiedlichen Bruchmechanismen in Verbindung gesetzt werden. Superplastische Keramiken verformen sich ohne Einschnürung und brechen durch intergranulare Risse, die sich senkrecht zur Achse der äuβeren Spannung ausbreiten. Dagegen brechen superplastische metallische Legierungen gemeinhinmit intergranularen und transgranularen (Scherung) mechanismen mit begleitender Hohlraumbildung im Bereich der Einschnürung.