DREAM: Diabetic Retinopathy Analysis Using Machine Learning

人工智能 支持向量机 模式识别(心理学) 阿达布思 计算机科学 假阳性悖论 Boosting(机器学习) 糖尿病性视网膜病变 接收机工作特性 机器学习 医学 内分泌学 糖尿病
作者
Sukla Roychowdhury,Dara D. Koozekanani,Keshab K. Parhi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (5): 1717-1728 被引量:380
标识
DOI:10.1109/jbhi.2013.2294635
摘要

This paper presents a computer-aided screening system (DREAM) that analyzes fundus images with varying illumination and fields of view, and generates a severity grade for diabetic retinopathy (DR) using machine learning. Classifiers such as the Gaussian Mixture model (GMM), k-nearest neighbor (kNN), support vector machine (SVM), and AdaBoost are analyzed for classifying retinopathy lesions from nonlesions. GMM and kNN classifiers are found to be the best classifiers for bright and red lesion classification, respectively. A main contribution of this paper is the reduction in the number of features used for lesion classification by feature ranking using Adaboost where 30 top features are selected out of 78. A novel two-step hierarchical classification approach is proposed where the nonlesions or false positives are rejected in the first step. In the second step, the bright lesions are classified as hard exudates and cotton wool spots, and the red lesions are classified as hemorrhages and micro-aneurysms. This lesion classification problem deals with unbalanced datasets and SVM or combination classifiers derived from SVM using the Dempster-Shafer theory are found to incur more classification error than the GMM and kNN classifiers due to the data imbalance. The DR severity grading system is tested on 1200 images from the publicly available MESSIDOR dataset. The DREAM system achieves 100% sensitivity, 53.16% specificity, and 0.904 AUC, compared to the best reported 96% sensitivity, 51% specificity, and 0.875 AUC, for classifying images as with or without DR. The feature reduction further reduces the average computation time for DR severity per image from 59.54 to 3.46 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太眠完成签到,获得积分20
1秒前
1秒前
元羞花发布了新的文献求助10
1秒前
1秒前
519611521发布了新的文献求助10
3秒前
激昂的薯片完成签到,获得积分10
3秒前
刘明生发布了新的文献求助10
4秒前
itszoefff发布了新的文献求助10
4秒前
外向沛柔完成签到,获得积分10
4秒前
4秒前
小席要进步完成签到 ,获得积分10
5秒前
5秒前
haonanchen发布了新的文献求助10
6秒前
征征发布了新的文献求助10
6秒前
单纯的问雁完成签到,获得积分20
7秒前
共享精神应助a3979107采纳,获得10
9秒前
子木发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
追梦人完成签到 ,获得积分10
10秒前
在水一方应助单纯的问雁采纳,获得10
11秒前
11秒前
11秒前
思源应助科研通管家采纳,获得30
11秒前
慕青应助无限的隶采纳,获得10
11秒前
11秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
虚心未来应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126