DREAM: Diabetic Retinopathy Analysis Using Machine Learning

人工智能 支持向量机 模式识别(心理学) 阿达布思 计算机科学 假阳性悖论 Boosting(机器学习) 糖尿病性视网膜病变 接收机工作特性 机器学习 医学 糖尿病 内分泌学
作者
Sukla Roychowdhury,Dara D. Koozekanani,Keshab K. Parhi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (5): 1717-1728 被引量:380
标识
DOI:10.1109/jbhi.2013.2294635
摘要

This paper presents a computer-aided screening system (DREAM) that analyzes fundus images with varying illumination and fields of view, and generates a severity grade for diabetic retinopathy (DR) using machine learning. Classifiers such as the Gaussian Mixture model (GMM), k-nearest neighbor (kNN), support vector machine (SVM), and AdaBoost are analyzed for classifying retinopathy lesions from nonlesions. GMM and kNN classifiers are found to be the best classifiers for bright and red lesion classification, respectively. A main contribution of this paper is the reduction in the number of features used for lesion classification by feature ranking using Adaboost where 30 top features are selected out of 78. A novel two-step hierarchical classification approach is proposed where the nonlesions or false positives are rejected in the first step. In the second step, the bright lesions are classified as hard exudates and cotton wool spots, and the red lesions are classified as hemorrhages and micro-aneurysms. This lesion classification problem deals with unbalanced datasets and SVM or combination classifiers derived from SVM using the Dempster-Shafer theory are found to incur more classification error than the GMM and kNN classifiers due to the data imbalance. The DR severity grading system is tested on 1200 images from the publicly available MESSIDOR dataset. The DREAM system achieves 100% sensitivity, 53.16% specificity, and 0.904 AUC, compared to the best reported 96% sensitivity, 51% specificity, and 0.875 AUC, for classifying images as with or without DR. The feature reduction further reduces the average computation time for DR severity per image from 59.54 to 3.46 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Star-XYX采纳,获得10
2秒前
鹤昀完成签到 ,获得积分10
3秒前
十六发布了新的文献求助10
4秒前
5秒前
上官若男应助胖Q采纳,获得10
6秒前
勤恳长颈鹿完成签到,获得积分10
7秒前
8秒前
8秒前
SYLH应助jzw采纳,获得10
9秒前
bingbing发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
能干宛秋发布了新的文献求助30
13秒前
纪鹏飞完成签到,获得积分10
13秒前
14秒前
瓜兮兮CYY发布了新的文献求助10
14秒前
zzzzzyy发布了新的文献求助10
14秒前
干净的烧鹅完成签到,获得积分10
15秒前
马飞完成签到,获得积分10
17秒前
传奇3应助tanglu采纳,获得10
18秒前
水星逃逸发布了新的文献求助10
19秒前
19秒前
20秒前
朴实涵菡发布了新的文献求助10
22秒前
bbj完成签到,获得积分10
22秒前
跳跃的凌文完成签到 ,获得积分10
22秒前
孙志乾完成签到,获得积分10
22秒前
23秒前
25秒前
ding应助十六采纳,获得10
26秒前
无私冥幽完成签到,获得积分10
26秒前
26秒前
27秒前
研友_VZG7GZ应助Niar采纳,获得10
27秒前
畅跑daily完成签到,获得积分10
28秒前
宁燕完成签到,获得积分10
28秒前
赘婿应助潇洒的布偶采纳,获得10
28秒前
GM发布了新的文献求助10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420