Spectral Unmixing With Negative and Superunity Abundances for Subpixel Anomaly Detection

像素 高光谱成像 亚像素渲染 异常检测 模式识别(心理学) 异常(物理) 凸壳 数学 人工智能 聚类分析 端元 混合(物理) 假警报 计算机科学 物理 正多边形 量子力学 凝聚态物理 几何学
作者
Olga Duran,Maria Petrou
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:6 (1): 152-156 被引量:31
标识
DOI:10.1109/lgrs.2008.2009952
摘要

We propose a low false alarm methodology to determine anomalies in hyperspectral data. The method is based on the assumptions that the linear mixing model is valid and that, due to the resolution of the image, most pixels are mixtures of common substances, of which pure pixels (not mixtures) are rare. In the first stage of the algorithm, the classes associated with the background, which are the dominant classes in the image, are found by clustering the image pixels. The resulting clusters may be considered as representatives of the background classes in the image. In order to determine the anomalous pixels, a threshold may be applied to the distance between the pixel spectrum and the cluster centers. However, pixels corresponding to anomalies and pure substances will both show high distances. If we consider that the background classes are themselves most likely mixtures of other materials, the pixels within the convex hull formed by the background classes will have positive fractions that are smaller than one. The pure substances, however, will be outside such a convex hull and will show negative or superunity fractions. Pixels with such mixing proportions are explained as linear combinations of the background classes and, therefore, as not true anomalies. Pixels corresponding to anomalies, however, when expressed as linear combinations of the background classes, show high residual error even with negative and superunity mixing proportions. We use the unmixing spectral linear model without the nonnegativity constraint to distinguish between false anomalies corresponding to pure substances and real man-made anomalies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助rui采纳,获得10
1秒前
科研通AI2S应助称心尔曼采纳,获得10
3秒前
3秒前
共享精神应助精明的满天采纳,获得10
8秒前
小宝妈完成签到,获得积分20
9秒前
amnesiaycq发布了新的文献求助20
9秒前
genomed应助小余同学采纳,获得10
11秒前
健康的依白关注了科研通微信公众号
11秒前
11秒前
失眠凌青发布了新的文献求助10
12秒前
12秒前
完美世界应助温柔宛采纳,获得10
13秒前
RRRabbit完成签到,获得积分10
13秒前
电子发布了新的文献求助10
14秒前
liushuyu完成签到,获得积分10
15秒前
15秒前
15秒前
懵懂的紫萍完成签到 ,获得积分10
16秒前
仲了一枪发布了新的文献求助10
16秒前
16秒前
Ancial发布了新的文献求助10
17秒前
19秒前
nnnny完成签到,获得积分20
21秒前
RefractaireS完成签到 ,获得积分10
21秒前
yellow发布了新的文献求助10
21秒前
悟空发布了新的文献求助10
21秒前
不配.应助炙热的念柏采纳,获得10
22秒前
安徒发布了新的文献求助10
22秒前
华仔应助电子采纳,获得10
22秒前
22秒前
小蘑菇应助xiaoxiao采纳,获得30
22秒前
高挑的荆完成签到,获得积分10
23秒前
24秒前
呐呐发布了新的文献求助10
24秒前
清风明月完成签到,获得积分10
24秒前
27秒前
温柔宛发布了新的文献求助10
27秒前
Jane发布了新的文献求助10
29秒前
安徒完成签到,获得积分10
29秒前
史中瑞完成签到,获得积分10
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268118
求助须知:如何正确求助?哪些是违规求助? 2907500
关于积分的说明 8342520
捐赠科研通 2578037
什么是DOI,文献DOI怎么找? 1401624
科研通“疑难数据库(出版商)”最低求助积分说明 655107
邀请新用户注册赠送积分活动 634173