Optimization of SERS activities of gold nanoparticles and gold‐core–palladium‐shell nanoparticles by controlling size and shell thickness

纳米颗粒 胶体金 材料科学 分散性 拉曼光谱 扫描电子显微镜 透射电子显微镜 纳米技术 拉曼散射 壳体(结构) 动态光散射 表面增强拉曼光谱 化学工程 分析化学(期刊) 化学 光学 复合材料 色谱法 高分子化学 工程类 物理
作者
Ping‐Ping Fang,Jianfeng Li,Zhilin Yang,Limei Li,Bin Ren,Zhong‐Qun Tian
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:39 (11): 1679-1687 被引量:159
标识
DOI:10.1002/jrs.2066
摘要

Abstract The optimization of surface‐enhanced Raman scattering (SERS) activity of gold nanoparticles is essential for further enhancing SERS capability in terms of high sensitivity, stability and reproducibility. Recently, we utilized a simple seed‐mediated growth method to synthesize monodisperse Au nanoparticles with controllable size from about 16 to 160 nm, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis spectroscopy. These nanoparticles can be easily formed as a uniform thin film on glass carbon or gold substrates with an area larger than 1 mm. 2 The nanoparticle film with the size range of 120–135 nm showed the highest SERS activity with the excitation wavelength of 632.8 nm. Using pyridine as the probe molecule, the average enhancement factorcould reach up to 10 7 . Finite difference time domain (FDTD) calculationwas employed to explain the size‐dependent SERS activity. The optimum‐sized Au nanoparticles were utilized to further prepare Au–Pd core–shell (Au@Pd)nanoparticles in order to greatly enhance the SERS activity of the Pd shell. The enhancement factor of the ultrathin Pd shell was found to be over 5 × 10 4 . Thus the originally low enhancement factor of Pd could be improved substantially. Copyright © 2008 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YGYANG发布了新的文献求助10
2秒前
2秒前
王思蒙完成签到 ,获得积分10
4秒前
SciGPT应助橙留香采纳,获得10
6秒前
连长发布了新的文献求助10
7秒前
byby发布了新的文献求助10
7秒前
7秒前
7秒前
归尘发布了新的文献求助10
8秒前
吴海娇发布了新的文献求助10
8秒前
9秒前
彭于晏应助DrYang采纳,获得10
10秒前
yaosan完成签到,获得积分10
11秒前
kk发布了新的文献求助10
12秒前
YGYANG完成签到,获得积分10
13秒前
浮游应助tonyguo采纳,获得10
14秒前
清晨完成签到 ,获得积分10
14秒前
15秒前
小二郎应助那时花开采纳,获得10
17秒前
17秒前
17秒前
今天看文献了吗完成签到,获得积分10
18秒前
能干橘子完成签到,获得积分10
18秒前
明亮中心发布了新的文献求助10
19秒前
小嘀嗒完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
七年完成签到 ,获得积分10
22秒前
沉静弘文完成签到 ,获得积分10
22秒前
王子发布了新的文献求助10
22秒前
橙留香发布了新的文献求助10
25秒前
26秒前
zhang完成签到 ,获得积分10
26秒前
CodeCraft应助明亮中心采纳,获得10
26秒前
yuki完成签到 ,获得积分10
28秒前
byby发布了新的文献求助10
29秒前
31秒前
Akim应助kk采纳,获得10
31秒前
班班发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539399
关于积分的说明 14167889
捐赠科研通 4456910
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740