Identifying blood biomarkers for mood disorders using convergent functional genomics

心情 情绪障碍 医学 基因组学 功能基因组学 计算生物学 心理学 精神科 遗传学 基因 生物 基因组 焦虑
作者
H Le-Niculescu,Sunil M. Kurian,N Yehyawi,Charles C. Dike,Sagar D. Patel,Howard J. Edenberg,Ming T. Tsuang,Daniel R. Salomon,John I. Nürnberger,Alexander B. Niculescu
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:14 (2): 156-174 被引量:203
标识
DOI:10.1038/mp.2008.11
摘要

There are to date no objective clinical laboratory blood tests for mood disorders. The current reliance on patient self-report of symptom severity and on the clinicians' impression is a rate-limiting step in effective treatment and new drug development. We propose, and provide proof of principle for, an approach to help identify blood biomarkers for mood state. We measured whole-genome gene expression differences in blood samples from subjects with bipolar disorder that had low mood vs those that had high mood at the time of the blood draw, and separately, changes in gene expression in brain and blood of a mouse pharmacogenomic model. We then integrated our human blood gene expression data with animal model gene expression data, human genetic linkage/association data and human postmortem brain data, an approach called convergent functional genomics, as a Bayesian strategy for cross-validating and prioritizing findings. Topping our list of candidate blood biomarker genes we have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these genes have prior evidence of differential expression in human postmortem brains from mood disorder subjects. A predictive score developed based on a panel of 10 top candidate biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for high mood and low mood states, in two independent cohorts. Our studies suggest that blood biomarkers may offer an unexpectedly informative window into brain functioning and disease state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
万能图书馆应助典雅问寒采纳,获得10
1秒前
yy发布了新的文献求助10
2秒前
顺心的河马完成签到,获得积分20
4秒前
qing发布了新的文献求助10
4秒前
zgd发布了新的文献求助10
5秒前
zho发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
外向白开水完成签到 ,获得积分10
8秒前
8秒前
微垣完成签到,获得积分10
8秒前
9秒前
华仔应助达达利亚采纳,获得10
11秒前
大白完成签到 ,获得积分10
11秒前
11秒前
料峭声花发布了新的文献求助10
12秒前
13秒前
南风似潇应助pino采纳,获得10
13秒前
努力中的小鹿完成签到,获得积分10
14秒前
SYLH应助微垣采纳,获得10
14秒前
Timothy发布了新的文献求助10
14秒前
kiki完成签到,获得积分10
15秒前
路过蜻蜓完成签到,获得积分10
16秒前
17秒前
DaSheng完成签到,获得积分10
18秒前
18秒前
kiki发布了新的文献求助10
19秒前
19秒前
科研通AI5应助4645采纳,获得10
20秒前
典雅问寒发布了新的文献求助10
21秒前
达达利亚完成签到,获得积分10
23秒前
琪琪子发布了新的文献求助10
23秒前
24秒前
24秒前
zero完成签到 ,获得积分10
25秒前
reuslee发布了新的文献求助10
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734464
求助须知:如何正确求助?哪些是违规求助? 3278459
关于积分的说明 10009515
捐赠科研通 2995045
什么是DOI,文献DOI怎么找? 1643172
邀请新用户注册赠送积分活动 780986
科研通“疑难数据库(出版商)”最低求助积分说明 749183