Formal Analysis of the Probability of Interaction Fault Detection Using Random Testing

随机测试 计算机科学 正交试验 架空(工程) 重新使用 产品(数学) 测试策略 故障检测与隔离 软件 黑盒测试 基于模型的测试 软件测试 组合爆炸 测试用例 可靠性工程 机器学习 软件系统 人工智能 数学 程序设计语言 软件建设 工程类 回归分析 执行机构 组合数学 生物 生态学 几何学
作者
Andrea Arcuri,Lionel Briand
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:38 (5): 1088-1099 被引量:66
标识
DOI:10.1109/tse.2011.85
摘要

Modern systems are becoming highly configurable to satisfy the varying needs of customers and users. Software product lines are hence becoming a common trend in software development to reduce cost by enabling systematic, large-scale reuse. However, high levels of configurability entail new challenges. Some faults might be revealed only if a particular combination of features is selected in the delivered products. But testing all combinations is usually not feasible in practice, due to their extremely large numbers. Combinatorial testing is a technique to generate smaller test suites for which all combinations of t features are guaranteed to be tested. In this paper, we present several theorems describing the probability of random testing to detect interaction faults and compare the results to combinatorial testing when there are no constraints among the features that can be part of a product. For example, random testing becomes even more effective as the number of features increases and converges toward equal effectiveness with combinatorial testing. Given that combinatorial testing entails significant computational overhead in the presence of hundreds or thousands of features, the results suggest that there are realistic scenarios in which random testing may outperform combinatorial testing in large systems. Furthermore, in common situations where test budgets are constrained and unlike combinatorial testing, random testing can still provide minimum guarantees on the probability of fault detection at any interaction level. However, when constraints are present among features, then random testing can fare arbitrarily worse than combinatorial testing. As a result, in order to have a practical impact, future research should focus on better understanding the decision process to choose between random testing and combinatorial testing, and improve combinatorial testing in the presence of feature constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鱼完成签到 ,获得积分10
刚刚
9202211125完成签到,获得积分10
刚刚
Native007完成签到,获得积分10
1秒前
Lc发布了新的文献求助10
1秒前
田様应助明天会更美好采纳,获得100
1秒前
11发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Bethune完成签到,获得积分10
3秒前
感动的寒云应助Pheonix1998采纳,获得30
3秒前
我是老大应助Sylvia0528采纳,获得10
3秒前
愉快的宛儿完成签到,获得积分20
3秒前
3秒前
ni完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
一心扑在搞学术完成签到,获得积分20
4秒前
NorthWang完成签到,获得积分10
5秒前
En给勤恳的仰的求助进行了留言
5秒前
大黄人发布了新的文献求助10
6秒前
桐桐应助单纯的晓曼采纳,获得10
6秒前
苏小安发布了新的文献求助10
6秒前
鞘皮发布了新的文献求助10
6秒前
小管完成签到,获得积分10
6秒前
ziwei发布了新的文献求助10
6秒前
严惜完成签到,获得积分10
6秒前
6秒前
sky完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
尉迟希望发布了新的文献求助10
8秒前
qqq发布了新的文献求助40
8秒前
8秒前
纪晓灵完成签到,获得积分10
8秒前
狂奔弟弟完成签到 ,获得积分10
8秒前
hdy完成签到,获得积分10
8秒前
NorthWang发布了新的文献求助10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060