Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization

规范化(社会学) 数学优化 多目标优化 进化算法 帕累托原理 计算机科学 元启发式 相容性(地球化学) 人口 最优化问题 数学 工程类 人类学 化学工程 社会学 人口学
作者
Raquel Hernández Gómez,Carlos A. Coello Coello
标识
DOI:10.1145/2739480.2754776
摘要

In recent years, performance indicators were introduced as a selection mechanism in multi-objective evolutionary algorithms (MOEAs). A very attractive option is the R2 indicator due to its low computational cost and weak-Pareto compatibility. This indicator requires a set of utility functions, which map each objective to a single value. However, not all the utility functions available in the literature scale properly for more than four objectives and the diversity of the approximation sets is sensitive to the choice of the reference points during normalization. In this paper, we present an improved version of a MOEA based on the $R2$ indicator, which takes into account these two key aspects, using the achievement scalarizing function and statistical information about the population's proximity to the true Pareto optimal front. Moreover, we present a comparative study with respect to some other emerging approaches, such as NSGA-III (based on Pareto dominance), Δp-DDE (based on the Δp indicator) and some other MOEAs based on the R2 indicator, using the DTLZ and WFG test problems. Experimental results indicate that our approach outperforms the original algorithm as well as the other MOEAs in the majority of the test instances, making it a suitable alternative for solving many-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
执着幻桃完成签到,获得积分10
刚刚
ghfgjjf发布了新的文献求助20
1秒前
Akim应助科研通管家采纳,获得10
1秒前
脑洞疼应助翟肇永采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得30
1秒前
July应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
天天快乐应助耍酷傲菡采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
孙燕应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
Hello应助wandaiji采纳,获得10
3秒前
3秒前
Smiley发布了新的文献求助10
3秒前
3秒前
Betsy完成签到,获得积分10
3秒前
3秒前
王森发布了新的文献求助10
3秒前
lalala发布了新的文献求助10
4秒前
sunflower应助庄小鱼采纳,获得10
4秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060