Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization

规范化(社会学) 数学优化 多目标优化 进化算法 帕累托原理 计算机科学 元启发式 相容性(地球化学) 人口 最优化问题 数学 工程类 人类学 化学工程 社会学 人口学
作者
Raquel Hernández Gómez,Carlos A. Coello Coello
标识
DOI:10.1145/2739480.2754776
摘要

In recent years, performance indicators were introduced as a selection mechanism in multi-objective evolutionary algorithms (MOEAs). A very attractive option is the R2 indicator due to its low computational cost and weak-Pareto compatibility. This indicator requires a set of utility functions, which map each objective to a single value. However, not all the utility functions available in the literature scale properly for more than four objectives and the diversity of the approximation sets is sensitive to the choice of the reference points during normalization. In this paper, we present an improved version of a MOEA based on the $R2$ indicator, which takes into account these two key aspects, using the achievement scalarizing function and statistical information about the population's proximity to the true Pareto optimal front. Moreover, we present a comparative study with respect to some other emerging approaches, such as NSGA-III (based on Pareto dominance), Δp-DDE (based on the Δp indicator) and some other MOEAs based on the R2 indicator, using the DTLZ and WFG test problems. Experimental results indicate that our approach outperforms the original algorithm as well as the other MOEAs in the majority of the test instances, making it a suitable alternative for solving many-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨天水发布了新的文献求助10
1秒前
1秒前
VDC应助梁liang采纳,获得30
1秒前
chen发布了新的文献求助10
1秒前
1秒前
青wu发布了新的文献求助10
2秒前
a龙完成签到,获得积分10
2秒前
眯眯眼的老鼠完成签到,获得积分20
2秒前
无花果应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
wanci应助嗯哼采纳,获得10
3秒前
nanan完成签到,获得积分10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Hungrylunch应助科研通管家采纳,获得20
3秒前
Cassie应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
暴躁四叔应助科研通管家采纳,获得20
3秒前
Zn应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
Zn应助科研通管家采纳,获得10
4秒前
4秒前
AN应助科研通管家采纳,获得10
4秒前
4秒前
控制小弟应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
自由寻梅发布了新的文献求助30
5秒前
冰西瓜最棒_完成签到,获得积分10
5秒前
古怪小枫完成签到,获得积分10
6秒前
TiAmo完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672