Effective Screening Strategy Using Ensembled Pharmacophore Models Combined with Cascade Docking: Application to p53-MDM2 Interaction Inhibitors

药效团 虚拟筛选 对接(动物) 计算生物学 码头 药物发现 化学 靶蛋白 计算机科学 组合化学 立体化学 生物 生物化学 医学 基因 护理部
作者
Xin Xue,Jinlian Wei,Lili Xu,Meiyang Xi,Xiao-Li Xu,Fang Liu,Xiaoke Guo,Lei Wang,Xiaojin Zhang,Mingye Zhang,Mengchen Lu,Haopeng Sun,Qidong You
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:53 (10): 2715-2729 被引量:28
标识
DOI:10.1021/ci400348f
摘要

Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roach完成签到,获得积分10
刚刚
Jasper应助怕黑三毒采纳,获得10
1秒前
安静的乌冬面完成签到 ,获得积分10
1秒前
1秒前
csy完成签到,获得积分10
2秒前
melody完成签到,获得积分10
2秒前
3秒前
3秒前
cca发布了新的文献求助10
3秒前
BabiboSu发布了新的文献求助20
3秒前
LR完成签到,获得积分20
3秒前
追寻冰淇淋应助lemon采纳,获得30
3秒前
3秒前
天天快乐应助ccc采纳,获得10
4秒前
4秒前
耶耶完成签到,获得积分10
4秒前
春色未软旧苔痕完成签到 ,获得积分10
5秒前
怕黑愫应助VAE采纳,获得10
6秒前
王梦龙完成签到,获得积分20
6秒前
6秒前
6秒前
sum.wang完成签到,获得积分10
7秒前
思源应助zyl采纳,获得10
7秒前
8秒前
明理鱼完成签到,获得积分10
8秒前
我是老大应助负责乐安采纳,获得10
8秒前
皇甫契完成签到,获得积分10
8秒前
努力生活的小柴完成签到,获得积分10
8秒前
8秒前
9秒前
77完成签到 ,获得积分10
9秒前
852应助曾经高跟鞋采纳,获得10
10秒前
10秒前
充电宝应助秃顶双马尾采纳,获得10
10秒前
虾仁发布了新的文献求助10
10秒前
搜集达人应助姿姿采纳,获得30
11秒前
11秒前
12秒前
难过丹寒完成签到,获得积分20
12秒前
lucklywangli发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798