瞬时受体电位通道
TRPM7型
TRPV4型
尿路上皮
TRPV公司
细胞生物学
尿路上皮细胞
TRPV1型
电压依赖性钙通道
钙信号传导
受体
生物
化学
钙
内分泌学
信号转导
生物化学
泌尿系统
有机化学
作者
Wouter Everaerts,Joris Vriens,Grzegorz Owsianik,Giovanni Appendino,Thomas Voets,Dirk De Ridder,Bernd Nilius
出处
期刊:American Journal of Physiology-renal Physiology
[American Physiological Society]
日期:2010-03-01
卷期号:298 (3): F692-F701
被引量:143
标识
DOI:10.1152/ajprenal.00599.2009
摘要
The bladder urothelium is currently believed to be a sensory structure, contributing to mechano- and chemosensation in the bladder. Transient receptor potential (TRP) cation channels act as polymodal sensors and may underlie some of the receptive properties of urothelial cells. However, the exact TRP channel expression profile of urothelial cells is unclear. In this study, we have performed a systematic analysis of the molecular and functional expression of various TRP channels in mouse urothelium. Urothelial cells from control and trpv4 −/− mice were isolated, cultured (12–48 h), and used for quantitative real-time PCR, immunocytochemistry, calcium imaging, and whole cell patch-clamp experiments. At the mRNA level, TRPV4, TRPV2, and TRPM7 were the most abundantly expressed TRP genes. Immunohistochemistry showed a clear expression of TRPV4 in the plasma membrane, whereas TRPV2 was more prominent in the cytoplasm. TRPM7 was detected in the plasma membrane as well as cytoplasmic vesicles. Calcium imaging and patch-clamp experiments using TRP channel agonists and antagonists provided evidence for the functional expression of TRPV4, TRPV2, and TRPM7 but not of TRPA1, TRPV1, and TRPM8. In conclusion, we have demonstrated functional expression of TRPV4, TRPV2, and TRPM7 in mouse urothelial cells. These channels may contribute to the (mechano)sensory function of the urothelial layer and represent potential targets for the treatment of bladder dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI