Global lyapunov exponents, kaplan‐yorke formulas and the dimension of the attractors for 2D navier‐stokes equations

吸引子 李雅普诺夫指数 数学 维数(图论) 纳维-斯托克斯方程组 李雅普诺夫函数 数学物理 应用数学 数学分析 纯数学 物理 非线性系统 量子力学 压缩性 热力学
作者
Peter Constantin,Ciprian Foiaş
出处
期刊:Communications on Pure and Applied Mathematics [Wiley]
卷期号:38 (1): 1-27 被引量:197
标识
DOI:10.1002/cpa.3160380102
摘要

Communications on Pure and Applied MathematicsVolume 38, Issue 1 p. 1-27 Article Global lyapunov exponents, kaplan-yorke formulas and the dimension of the attractors for 2D navier-stokes equations P. Constantin, P. Constantin Indiana UniversitySearch for more papers by this authorC. Foias, C. Foias Indiana UniversitySearch for more papers by this author P. Constantin, P. Constantin Indiana UniversitySearch for more papers by this authorC. Foias, C. Foias Indiana UniversitySearch for more papers by this author First published: January 1985 https://doi.org/10.1002/cpa.3160380102Citations: 155AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Babin, A. V., and Vishik, M. I., Attractors of quasilinear parabolic equations, Dokladi Akad. Nauk S. S. S. R. 264, 1982, pp. 780–784. (in Russian.) 2 Babin, A. V., and Vishik, M. I., Existence and estimate of the dimension of the attractors of quasilinear parabolic equations and Navier-Stokes systems, Uspehi Mat. Nauk 3, 1982, p. 225. (in Russian.) 3 Constantin, P., and Foias, C., Sur le transport des variétes de dimension finite par les solutions des équations de Navier-Stokes, C. R. Acad. Sci. Paris, t. 296, série I, 10 Janvier 1983, pp. 23–26. 4 Douady, A., and Oesterlé, J., Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Paris, t. 290, série A, 30 Juin 1980, pp. 1135–1138. 5 Farmer, D., Chaotic attractors of an infinite dimensional system, Physica D 4D, 1982, pp. 366–393. 6 Foias, C., Solutions statistiques des équations de Navier-Stokes, Cours au College de France, 1974, mimeographed notes. 7 Foias, C., Guillopé, C., and Temam, R., New apriori estimates for Navier-Stokes equations in dimension 3, Comm. in P. D. E. 6, 1981, pp. 329–359 8 Foias, C., Manley, O., Temam, R., and Trève, Y., Asymptotic analysis of the Navier-Stokes equations, Physica D., 1983, pp. 157–188. 9 Foias, C., and Prodi, G., Sur le comportement global des solutions nonstationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Padova 39, 1967, pp. 1–34. 10 Foias, C., and Temam, R., Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures et Appl. 58, 1979, pp. 339–368. 11 Foias, C., and Temam, R., On the Hausdorff dimension of an attractor for the two-Dimensional Navier-Stokes equations, Physics Letters 93A, 1983, pp. 451–454. 12 Hartman, P., Ordinary Differential Equations, Birkhäuser, Boston, 1982, p. 242. 13 Kaplan, J., and Yorke, J., Chaotic behaviour of multidimensional difference equations, Functional Differential Equations and Approximation of Fixed Points, H. O. Peitgen and H. O. Walther, editors, Lecture Notes in Mathematics 730, Springer, Berlin, 1979, p. 219. 14 Kato, T., Perturbation Theory for Linear Operators, Springer, Berlin, 1976. 15 Ladyzhenskaia, O. A., On the finite dimensionality of bounded invariant sets for dissipative problems, Dokladi Adad. Nauk S. S. S. R. 263, 1982, pp. 802–804. (in Russian.) 16 Mallet-Paret, J., Negatively invariant sets of compact maps and extension of a theorem by Cartwright, J. Diff. Eq. 22, 1976, pp. 331–248. 17 Mandelbrot, B., Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. 18 Métivier, G., Valeurs propres d'opérateurs définis par la restriction de systèmes variationels à des sous espaces, J. Math. Pures et Appl. 57, 1978, pp. 133–156. 19 Minea, Gh., Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Revue Roumaine de Math. Pures et Appl. 21, 1976, pp. 1071–1075. 20 Ruelle, D., Ergotic theory of differential dynamical systems, Publications Mathematiques IHES 50, 1979, pp. 275–306. 21 Ruelle, D., Large volume limit of the distribution of charactertics exponents in turbulence, IHES preprint 82145. 22 Stein, E., Singular Integrals and the Differentiability Properties of Functions, Princeton University Press, 1970. 23 Temam, R., Navier-Stokes equations and nonlinear functional analysys, NSF/CBMS Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983. Citing Literature Volume38, Issue1January 1985Pages 1-27 ReferencesRelatedInformation

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助搞笑有毅力采纳,获得10
1秒前
文艺宛海发布了新的文献求助10
2秒前
YG完成签到,获得积分10
2秒前
迷人的问蕊完成签到,获得积分10
2秒前
郭志晟发布了新的文献求助10
2秒前
香菜碗里来完成签到,获得积分10
3秒前
Linn_Z发布了新的文献求助30
3秒前
李健应助大胆诗云采纳,获得10
3秒前
yan完成签到,获得积分10
3秒前
4秒前
4秒前
鲜艳的沛春完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
专注的问寒应助小猫宝采纳,获得50
7秒前
7秒前
zxd发布了新的文献求助10
7秒前
离离发布了新的文献求助10
8秒前
Orange应助不爱看文献采纳,获得10
8秒前
一米阳光发布了新的文献求助10
9秒前
世安完成签到,获得积分10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
丝绒发布了新的文献求助10
11秒前
无情的函发布了新的文献求助10
12秒前
dm发布了新的文献求助10
14秒前
14秒前
14秒前
berg发布了新的文献求助10
14秒前
14秒前
14秒前
guo完成签到,获得积分10
15秒前
英俊的铭应助丝绒采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578