Global lyapunov exponents, kaplan‐yorke formulas and the dimension of the attractors for 2D navier‐stokes equations

吸引子 李雅普诺夫指数 数学 维数(图论) 纳维-斯托克斯方程组 李雅普诺夫函数 数学物理 应用数学 数学分析 纯数学 物理 非线性系统 量子力学 压缩性 热力学
作者
Peter Constantin,Ciprian Foiaş
出处
期刊:Communications on Pure and Applied Mathematics [Wiley]
卷期号:38 (1): 1-27 被引量:197
标识
DOI:10.1002/cpa.3160380102
摘要

Communications on Pure and Applied MathematicsVolume 38, Issue 1 p. 1-27 Article Global lyapunov exponents, kaplan-yorke formulas and the dimension of the attractors for 2D navier-stokes equations P. Constantin, P. Constantin Indiana UniversitySearch for more papers by this authorC. Foias, C. Foias Indiana UniversitySearch for more papers by this author P. Constantin, P. Constantin Indiana UniversitySearch for more papers by this authorC. Foias, C. Foias Indiana UniversitySearch for more papers by this author First published: January 1985 https://doi.org/10.1002/cpa.3160380102Citations: 155AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Babin, A. V., and Vishik, M. I., Attractors of quasilinear parabolic equations, Dokladi Akad. Nauk S. S. S. R. 264, 1982, pp. 780–784. (in Russian.) 2 Babin, A. V., and Vishik, M. I., Existence and estimate of the dimension of the attractors of quasilinear parabolic equations and Navier-Stokes systems, Uspehi Mat. Nauk 3, 1982, p. 225. (in Russian.) 3 Constantin, P., and Foias, C., Sur le transport des variétes de dimension finite par les solutions des équations de Navier-Stokes, C. R. Acad. Sci. Paris, t. 296, série I, 10 Janvier 1983, pp. 23–26. 4 Douady, A., and Oesterlé, J., Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Paris, t. 290, série A, 30 Juin 1980, pp. 1135–1138. 5 Farmer, D., Chaotic attractors of an infinite dimensional system, Physica D 4D, 1982, pp. 366–393. 6 Foias, C., Solutions statistiques des équations de Navier-Stokes, Cours au College de France, 1974, mimeographed notes. 7 Foias, C., Guillopé, C., and Temam, R., New apriori estimates for Navier-Stokes equations in dimension 3, Comm. in P. D. E. 6, 1981, pp. 329–359 8 Foias, C., Manley, O., Temam, R., and Trève, Y., Asymptotic analysis of the Navier-Stokes equations, Physica D., 1983, pp. 157–188. 9 Foias, C., and Prodi, G., Sur le comportement global des solutions nonstationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Padova 39, 1967, pp. 1–34. 10 Foias, C., and Temam, R., Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures et Appl. 58, 1979, pp. 339–368. 11 Foias, C., and Temam, R., On the Hausdorff dimension of an attractor for the two-Dimensional Navier-Stokes equations, Physics Letters 93A, 1983, pp. 451–454. 12 Hartman, P., Ordinary Differential Equations, Birkhäuser, Boston, 1982, p. 242. 13 Kaplan, J., and Yorke, J., Chaotic behaviour of multidimensional difference equations, Functional Differential Equations and Approximation of Fixed Points, H. O. Peitgen and H. O. Walther, editors, Lecture Notes in Mathematics 730, Springer, Berlin, 1979, p. 219. 14 Kato, T., Perturbation Theory for Linear Operators, Springer, Berlin, 1976. 15 Ladyzhenskaia, O. A., On the finite dimensionality of bounded invariant sets for dissipative problems, Dokladi Adad. Nauk S. S. S. R. 263, 1982, pp. 802–804. (in Russian.) 16 Mallet-Paret, J., Negatively invariant sets of compact maps and extension of a theorem by Cartwright, J. Diff. Eq. 22, 1976, pp. 331–248. 17 Mandelbrot, B., Fractals: Form, Chance and Dimension, Freeman, San Francisco, 1977. 18 Métivier, G., Valeurs propres d'opérateurs définis par la restriction de systèmes variationels à des sous espaces, J. Math. Pures et Appl. 57, 1978, pp. 133–156. 19 Minea, Gh., Remarques sur l'unicité de la solution stationnaire d'une équation de type Navier-Stokes, Revue Roumaine de Math. Pures et Appl. 21, 1976, pp. 1071–1075. 20 Ruelle, D., Ergotic theory of differential dynamical systems, Publications Mathematiques IHES 50, 1979, pp. 275–306. 21 Ruelle, D., Large volume limit of the distribution of charactertics exponents in turbulence, IHES preprint 82145. 22 Stein, E., Singular Integrals and the Differentiability Properties of Functions, Princeton University Press, 1970. 23 Temam, R., Navier-Stokes equations and nonlinear functional analysys, NSF/CBMS Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983. Citing Literature Volume38, Issue1January 1985Pages 1-27 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助高贵书白采纳,获得10
1秒前
1秒前
Tomice发布了新的文献求助10
1秒前
ZYY发布了新的文献求助10
3秒前
doublerich发布了新的文献求助30
5秒前
5秒前
6秒前
李健的小迷弟应助bifeifei采纳,获得10
6秒前
科目三应助可爱半双采纳,获得10
8秒前
8秒前
hollow完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助20
9秒前
Owen应助红红采纳,获得10
9秒前
wanci应助花啊拾肆采纳,获得30
10秒前
10秒前
11秒前
CC发布了新的文献求助10
11秒前
Huang发布了新的文献求助10
11秒前
用户1747发布了新的文献求助10
14秒前
19秒前
欣慰的颦发布了新的文献求助10
19秒前
22秒前
研友_VZG7GZ应助killler采纳,获得10
22秒前
所所应助小畅采纳,获得100
23秒前
24秒前
24秒前
如沐春风发布了新的文献求助10
25秒前
cfyoung完成签到,获得积分10
25秒前
26秒前
嗯哼应助自由采纳,获得10
26秒前
sube完成签到,获得积分10
27秒前
huhuhuuh发布了新的文献求助10
28秒前
28秒前
徐佳达发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
红红发布了新的文献求助10
30秒前
31秒前
标致幼菱完成签到,获得积分10
31秒前
Loki应助wu采纳,获得30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073193
求助须知:如何正确求助?哪些是违规求助? 4293286
关于积分的说明 13378053
捐赠科研通 4114770
什么是DOI,文献DOI怎么找? 2253101
邀请新用户注册赠送积分活动 1257931
关于科研通互助平台的介绍 1190770