数学
奇点
公理
纯数学
等级制度
不变(物理)
奇点理论
猜想
孤立奇点
域代数上的
数学分析
几何学
数学物理
经济
市场经济
作者
Si-Qi Liu,Yongbin Ruan,Youjin Zhang
标识
DOI:10.1007/s00222-014-0559-3
摘要
According to the ADE Witten conjecture, which is proved by Fan, Jarvis and Ruan, the total descendant potential of the FJRW invariants of an ADE singularity is a tau function of the corresponding mirror ADE Drinfeld-Sokolov hierarchy. In the present paper, we show that there is a finite group $\Gamma$ acting on a certain ADE singularity which induces an action on the corresponding FJRW-theory, and the $\Gamma$-invariant sector also satisfies the axioms of a cohomological field theory except the gluing loop axiom. On the other hand, we show that there is also a $\Gamma$-action on the mirror Drinfeld-Sokolov hierarchy, and the $\Gamma$-invariant flows yield the BCFG Drinfeld-Sokolov hierarchy. We prove that the total descendant potential of the $\Gamma$-invariant sector of a FJRW-theory is a tau function of the corresponding BCFG Drinfeld-Sokolov hierarchy.
科研通智能强力驱动
Strongly Powered by AbleSci AI