缩放比例
代表(政治)
人工神经网络
计算机科学
回归分析
生物系统
统计物理学
回归
统计
数学
人工智能
机器学习
物理
几何学
政治
政治学
法学
生物
作者
Milton E. Teske,Harold W. Thistle
出处
期刊:Atomization and Sprays
[Begell House Inc.]
日期:2000-01-01
卷期号:10 (2): 12-12
被引量:4
标识
DOI:10.1615/atomizspr.v10.i2.30
摘要
A preliminary dimensional analysis has been undertaken on a large agricultural atomization database, developed by the Spray Drift Task Force, with the goal of recovering fitting parameters that may be used to generate droplet size spectra in the absence of laboratory data. The results presented herein are encouraging but not definitive: correlation coefficients between 0.596 and 0.843, consistently lower than coefficients produced by two alternative methodsa statistical approach using multiple regression analysis, and a neural network representationalso summarized herein. Possible reasons for the lower correlation coefficients with dimensional analysis, a technique that should provide direct physical insight and not simply fit the data, are explored.
科研通智能强力驱动
Strongly Powered by AbleSci AI