清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of higher order spectral features and support vector machines for bearing faults classification

支持向量机 主成分分析 稳健性(进化) 模式识别(心理学) 人工智能 振动 超参数优化 降维 分类器(UML) 计算机科学 滚动轴承 维数之咒 相关向量机 特征向量 工程类 量子力学 基因 物理 生物化学 化学
作者
Lotfi Saïdi,Jaouher Ben Ali,Farhat Fnaiech
出处
期刊:Isa Transactions [Elsevier]
卷期号:54: 193-206 被引量:158
标识
DOI:10.1016/j.isatra.2014.08.007
摘要

Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ght完成签到 ,获得积分10
6秒前
拿铁小笼包应助mmyhn采纳,获得10
10秒前
yy完成签到 ,获得积分10
10秒前
Ann完成签到,获得积分10
16秒前
拿铁小笼包应助mmyhn采纳,获得10
24秒前
无情夏寒完成签到 ,获得积分10
25秒前
nav完成签到 ,获得积分10
30秒前
标致诗双完成签到,获得积分10
30秒前
32秒前
34秒前
科研通AI2S应助mmyhn采纳,获得10
41秒前
淡淡的薯片完成签到,获得积分10
45秒前
47秒前
emxzemxz完成签到 ,获得积分10
50秒前
52秒前
思源应助mmyhn采纳,获得10
1分钟前
阿欢完成签到 ,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
ceeray23应助SL采纳,获得10
1分钟前
EVEN完成签到 ,获得积分10
1分钟前
留白完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
wubuking完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
dreamode完成签到,获得积分10
1分钟前
Hasee完成签到 ,获得积分10
1分钟前
没所谓完成签到 ,获得积分10
1分钟前
guardjohn完成签到,获得积分10
1分钟前
ran完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
大吴克发布了新的文献求助10
2分钟前
2分钟前
Zer完成签到,获得积分10
2分钟前
踏实谷蓝完成签到 ,获得积分10
2分钟前
WSYang完成签到,获得积分10
2分钟前
ss完成签到,获得积分10
2分钟前
开拖拉机的医学僧完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003800
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477