Is Optimal Matching Suboptimal?

匹配(统计) 序列(生物学) 相似性(几何) 计算机科学 最佳匹配 考试(生物学) 度量(数据仓库) 价值(数学) 索引 计量经济学 数据挖掘 数学 统计 人工智能 机器学习 古生物学 遗传学 生物化学 化学 生物 单核苷酸多态性 基因型 基因 图像(数学)
作者
Matissa Hollister
出处
期刊:Sociological Methods & Research [SAGE]
卷期号:38 (2): 235-264 被引量:82
标识
DOI:10.1177/0049124109346164
摘要

Optimal matching (OM) is a method for measuring the similarity between pairs of sequences (e.g., work histories). This article discusses two problems with optimal matching. First, the author identifies a flaw in OM ‘‘indel costs’’ and proposes a solution to this flaw. Second, the author discusses the need for benchmarks to measure the added value of OM and to test competing versions. To that end, the author conducts an empirical test of traditional OM, the alternative localized OM, and sequence comparison. The test documents the problem with traditional OM and shows that it is solved by localized OM. The test also demonstrates the value of OM and sequence comparison in examining occupational sequences; both methods capture variation beyond traditional human capital and status attainment measures, although the marginal improvements of OM over sequence comparison may not justify its computational complexity. These results point to the need for more systematic approaches to sequence analysis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助一天八杯水采纳,获得10
刚刚
所所应助静静子采纳,获得10
1秒前
所所应助jy采纳,获得10
1秒前
hkxfg完成签到,获得积分10
1秒前
duo完成签到,获得积分10
2秒前
3秒前
spurs17发布了新的文献求助10
3秒前
3秒前
善学以致用应助BaekHyun采纳,获得10
3秒前
4秒前
4秒前
nanhe698完成签到,获得积分10
5秒前
5秒前
李本来完成签到,获得积分20
6秒前
看看发布了新的文献求助10
6秒前
ZZY完成签到,获得积分10
6秒前
DQY完成签到,获得积分10
7秒前
BONBON完成签到,获得积分20
7秒前
动听导师发布了新的文献求助10
8秒前
8秒前
季忆完成签到,获得积分10
8秒前
小周发布了新的文献求助10
9秒前
smile发布了新的文献求助10
9秒前
10秒前
Lore完成签到 ,获得积分10
10秒前
10秒前
jiang完成签到,获得积分10
11秒前
11秒前
无奈的酒窝关注了科研通微信公众号
12秒前
毛毛完成签到,获得积分10
12秒前
正在完成签到,获得积分10
13秒前
13秒前
充电宝应助JR采纳,获得10
14秒前
14秒前
cc完成签到,获得积分20
14秒前
李爱国应助111采纳,获得10
14秒前
jy发布了新的文献求助10
14秒前
好好完成签到 ,获得积分10
15秒前
阿希塔完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808