趋同(经济学)
计算
简并能级
数值积分
会聚区
依赖关系(UML)
收敛性检验
机械
纵向一体化
应用数学
几何学
计算机科学
地质学
数学
数学优化
数学分析
收敛速度
算法
物理
频道(广播)
软件工程
量子力学
经济增长
经济
气候学
法学
政治学
计算机网络
作者
Zhiyuan Pan,Torgeir Vada,Finn‐Christian W. Hanssen
标识
DOI:10.1115/omae2013-10249
摘要
The convergence of drift force computation on a LNGC in shallow water is studied. It is found that the convergence of the result, especially for the pressure integration method, is largely dependent on the mesh quality. Furthermore, the irregular frequencies degenerate the results in the high frequency region. The LNGC analysis has numerical challenges related to the geometry and water depth. We also wanted to see if the convergence properties are due to this or if they are of more general nature. To investigate this, an additional analysis was done for a Wigley ship in deep water. The convergence properties were found to be even poorer in this case. This shows that the convergence problem seems to be quite general. It is also found that the vertical components, which have to be evaluated by pressure integration, converge much better than the horizontal components. Hence all six components can be found using a moderately dense mesh by using the far field integration for the horizontal components and only the vertical components from the pressure integration.
科研通智能强力驱动
Strongly Powered by AbleSci AI