卷积(计算机科学)
柯西分布
高斯分布
功能(生物学)
应用数学
数学
计算机科学
高斯函数
算法
概率密度函数
纯数学
域代数上的
人工智能
数学分析
人工神经网络
统计
物理
生物
进化生物学
量子力学
作者
Christophe Molina,William J. Fitzgerald,P.J.W. Rayner
摘要
In previous work, Regularisation by Convolution was proposed to improve the generalisation on regression of Gaussian Radial Basis Function Networks [Molina and Niranjan, 1997]. In this paper, we demonstrate that the same technique can be applied to a more general family of RBF networks called Symmetric-α-Stable function networks (SαS networks) which contains the Gaussian and Cauchy functions as particular cases. We also demonstrate that Regularisation by Convolution can be applied to sigmoidallike function networks obtained by integration of SαS kernels. We illustrate the performance of Regularisation by Convolution on Wahba's toy problem and the probability density estimation of ink in ancient manuscript letters (British library Beowulf manuscript).
科研通智能强力驱动
Strongly Powered by AbleSci AI