Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing

城市化 遥感 土地覆盖 端元 环境科学 植被(病理学) 像素 自动汇总 时间序列 土地利用 混乱 自然地理学 中国 地理 计算机科学 生态学 考古 机器学习 高光谱成像 人工智能 病理 生物 医学 计算机视觉 心理学 精神分析
作者
Ryo Michishita,Zhi‐Qiang Jiang,Bing Xu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:117: 3-18 被引量:120
标识
DOI:10.1016/j.rse.2011.06.021
摘要

There is an increasing need to understand the dynamics in urbanization not only temporally but also spatially for the improvement of urban environments. In spite of an enormous number of previous studies in urban remote sensing applications, only a few studies have been conducted on the techniques in the quantification, qualification, and visualization of the changes in time-series urban land cover fractions (LCFs) derived through spectral unmixing. To examine the urbanization process in four major cities around the Poyang Lake area in Jiangxi Province, China – Nanchang, Jingdezhen, Yingtan, and Poyang – using a time-series Landsat-5 TM dataset in 1987, 1993, 1999, 2004, and 2009, we investigated: (1) the approach to the derivation of LCFs in urban areas using multi-temporal remotely-sensed data set; and (2) the approach to the summarization and cartographic manipulation of the changes in time-series LCFs. To account for the complex spectral confusion among different land cover materials in built-up areas, the Multiple Endmember Spectral Mixture Analysis (MESMA) was used for unmixing the pixels. The Land Cover Change Intensity (LCCI) was proposed to derive the average daily change rate in terms of the area within a pixel for the land cover classes of green vegetation, non-photosynthetic vegetation and soil, and built-up areas between two consecutive TM observation dates. The dominant LCCI (DLCCI) was proposed to determine in which period the urban areas were developed most rapidly and how intense the urbanization process was in each pixel of the time-series LCCI maps. Our results showed that MESMA could accurately model the pixels in urban areas with complex spectral confusion of different land cover materials. The comparison of derived land cover fractions with socioeconomic statistics disclosed the strong positive correlation between built-up fractions and urban population as well as gross GDP and GDPs in secondary and tertiary industries. LCCI and DLCCI revealed two mechanisms of urbanization, which are new land developments and redevelopments of built-up areas. Consequently, we found that the four cities around the Poyang Lake were urbanized through different mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助youlingduxiu采纳,获得10
1秒前
2秒前
wuhao0118发布了新的文献求助10
2秒前
plst发布了新的文献求助10
2秒前
3秒前
lxy发布了新的文献求助10
3秒前
3秒前
Skyyeats发布了新的文献求助10
4秒前
康凯发布了新的文献求助10
4秒前
大模型应助ljydhr采纳,获得10
5秒前
ding应助平淡爆米花采纳,获得10
6秒前
6秒前
热心市民小红花应助林海采纳,获得10
6秒前
张豪杰发布了新的文献求助10
7秒前
7秒前
8秒前
plst完成签到,获得积分20
9秒前
布丁发布了新的文献求助10
9秒前
哦啦啦发布了新的文献求助10
9秒前
9秒前
梦梦的小可爱完成签到 ,获得积分10
9秒前
10秒前
伯赏浩天发布了新的文献求助10
10秒前
牧心24完成签到,获得积分10
10秒前
丘比特应助天佑小涛采纳,获得10
11秒前
等待冰之发布了新的文献求助20
11秒前
11秒前
Owen应助axiba采纳,获得10
12秒前
SYLH应助阿斌采纳,获得10
13秒前
14秒前
orixero应助RC_Wang采纳,获得10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
YaoHui发布了新的文献求助10
16秒前
attilio完成签到,获得积分10
18秒前
杳鸢应助飘逸鑫采纳,获得80
18秒前
默默衣完成签到 ,获得积分10
19秒前
无心的大侠完成签到 ,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303