Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing

城市化 遥感 土地覆盖 端元 环境科学 植被(病理学) 像素 自动汇总 时间序列 土地利用 混乱 自然地理学 中国 地理 计算机科学 生态学 考古 机器学习 高光谱成像 人工智能 病理 生物 医学 计算机视觉 心理学 精神分析
作者
Ryo Michishita,Zhi‐Qiang Jiang,Bing Xu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:117: 3-18 被引量:120
标识
DOI:10.1016/j.rse.2011.06.021
摘要

There is an increasing need to understand the dynamics in urbanization not only temporally but also spatially for the improvement of urban environments. In spite of an enormous number of previous studies in urban remote sensing applications, only a few studies have been conducted on the techniques in the quantification, qualification, and visualization of the changes in time-series urban land cover fractions (LCFs) derived through spectral unmixing. To examine the urbanization process in four major cities around the Poyang Lake area in Jiangxi Province, China – Nanchang, Jingdezhen, Yingtan, and Poyang – using a time-series Landsat-5 TM dataset in 1987, 1993, 1999, 2004, and 2009, we investigated: (1) the approach to the derivation of LCFs in urban areas using multi-temporal remotely-sensed data set; and (2) the approach to the summarization and cartographic manipulation of the changes in time-series LCFs. To account for the complex spectral confusion among different land cover materials in built-up areas, the Multiple Endmember Spectral Mixture Analysis (MESMA) was used for unmixing the pixels. The Land Cover Change Intensity (LCCI) was proposed to derive the average daily change rate in terms of the area within a pixel for the land cover classes of green vegetation, non-photosynthetic vegetation and soil, and built-up areas between two consecutive TM observation dates. The dominant LCCI (DLCCI) was proposed to determine in which period the urban areas were developed most rapidly and how intense the urbanization process was in each pixel of the time-series LCCI maps. Our results showed that MESMA could accurately model the pixels in urban areas with complex spectral confusion of different land cover materials. The comparison of derived land cover fractions with socioeconomic statistics disclosed the strong positive correlation between built-up fractions and urban population as well as gross GDP and GDPs in secondary and tertiary industries. LCCI and DLCCI revealed two mechanisms of urbanization, which are new land developments and redevelopments of built-up areas. Consequently, we found that the four cities around the Poyang Lake were urbanized through different mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mo发布了新的文献求助20
6秒前
6秒前
酷波er应助小问号采纳,获得10
9秒前
李天翔完成签到,获得积分10
17秒前
19秒前
伍绮彤发布了新的文献求助10
22秒前
A6L关闭了A6L文献求助
25秒前
不懂完成签到,获得积分10
28秒前
Hello应助南南采纳,获得10
32秒前
35秒前
劲秉应助不想学习采纳,获得10
38秒前
39秒前
酷波er应助yaoccccchen采纳,获得10
39秒前
39秒前
43秒前
小蘑菇应助仙乐采纳,获得10
43秒前
研友_VZG7GZ应助伍绮彤采纳,获得10
44秒前
AMMMMM发布了新的文献求助10
45秒前
皇甫勒发布了新的文献求助10
46秒前
47秒前
NexusExplorer应助ryan采纳,获得10
49秒前
xiaoqiang发布了新的文献求助20
49秒前
Hanayu完成签到 ,获得积分10
50秒前
刘晓纳发布了新的文献求助10
51秒前
皇甫勒完成签到,获得积分10
57秒前
57秒前
阔达煎蛋发布了新的文献求助10
58秒前
望北完成签到 ,获得积分10
58秒前
jiaolulu发布了新的文献求助10
59秒前
59秒前
忘羡发布了新的文献求助10
1分钟前
越越应助xdd采纳,获得10
1分钟前
1分钟前
1分钟前
衣蝉完成签到 ,获得积分10
1分钟前
GY00完成签到 ,获得积分20
1分钟前
cyy发布了新的文献求助10
1分钟前
Treasure完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279568
求助须知:如何正确求助?哪些是违规求助? 2917773
关于积分的说明 8387609
捐赠科研通 2588678
什么是DOI,文献DOI怎么找? 1410331
科研通“疑难数据库(出版商)”最低求助积分说明 657642
邀请新用户注册赠送积分活动 638805