Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing

城市化 遥感 土地覆盖 端元 环境科学 植被(病理学) 像素 自动汇总 时间序列 土地利用 混乱 自然地理学 中国 地理 计算机科学 生态学 考古 机器学习 高光谱成像 人工智能 病理 生物 医学 计算机视觉 心理学 精神分析
作者
Ryo Michishita,Zhi‐Qiang Jiang,Bing Xu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:117: 3-18 被引量:120
标识
DOI:10.1016/j.rse.2011.06.021
摘要

There is an increasing need to understand the dynamics in urbanization not only temporally but also spatially for the improvement of urban environments. In spite of an enormous number of previous studies in urban remote sensing applications, only a few studies have been conducted on the techniques in the quantification, qualification, and visualization of the changes in time-series urban land cover fractions (LCFs) derived through spectral unmixing. To examine the urbanization process in four major cities around the Poyang Lake area in Jiangxi Province, China – Nanchang, Jingdezhen, Yingtan, and Poyang – using a time-series Landsat-5 TM dataset in 1987, 1993, 1999, 2004, and 2009, we investigated: (1) the approach to the derivation of LCFs in urban areas using multi-temporal remotely-sensed data set; and (2) the approach to the summarization and cartographic manipulation of the changes in time-series LCFs. To account for the complex spectral confusion among different land cover materials in built-up areas, the Multiple Endmember Spectral Mixture Analysis (MESMA) was used for unmixing the pixels. The Land Cover Change Intensity (LCCI) was proposed to derive the average daily change rate in terms of the area within a pixel for the land cover classes of green vegetation, non-photosynthetic vegetation and soil, and built-up areas between two consecutive TM observation dates. The dominant LCCI (DLCCI) was proposed to determine in which period the urban areas were developed most rapidly and how intense the urbanization process was in each pixel of the time-series LCCI maps. Our results showed that MESMA could accurately model the pixels in urban areas with complex spectral confusion of different land cover materials. The comparison of derived land cover fractions with socioeconomic statistics disclosed the strong positive correlation between built-up fractions and urban population as well as gross GDP and GDPs in secondary and tertiary industries. LCCI and DLCCI revealed two mechanisms of urbanization, which are new land developments and redevelopments of built-up areas. Consequently, we found that the four cities around the Poyang Lake were urbanized through different mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Feng完成签到,获得积分10
1秒前
2秒前
花花完成签到,获得积分10
2秒前
一言矣完成签到 ,获得积分10
3秒前
海绵宝宝完成签到,获得积分10
4秒前
贪吃的猴子完成签到,获得积分10
4秒前
long完成签到 ,获得积分10
5秒前
研友_LOqqmZ发布了新的文献求助10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
kilig应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
清心淡如水完成签到,获得积分10
6秒前
Hao应助命运的X号采纳,获得10
7秒前
8秒前
9秒前
哭泣恋风完成签到 ,获得积分10
9秒前
zhizhzihzih完成签到,获得积分10
9秒前
9秒前
2568269431完成签到 ,获得积分10
10秒前
panzer发布了新的文献求助10
10秒前
10秒前
11秒前
smile发布了新的文献求助10
11秒前
12秒前
酷炫蚂蚁发布了新的文献求助10
12秒前
12秒前
Andy_Cheung完成签到,获得积分10
12秒前
feng完成签到,获得积分10
13秒前
maomao发布了新的文献求助10
13秒前
leena完成签到,获得积分10
13秒前
13秒前
青衣北风发布了新的文献求助10
14秒前
feng发布了新的文献求助10
14秒前
guygun发布了新的文献求助10
17秒前
小灰灰完成签到,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824