Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems

计算机科学 代表(政治) 任务(项目管理) 集合(抽象数据类型) 人工智能 运动学习 仿人机器人 电动机控制 运动(音乐) 吸引子 机器人 哲学 法学 程序设计语言 管理 神经科学 经济 政治学 数学分析 美学 政治 生物 数学
作者
Elmar Rückert,Andrea d’Avella
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media SA]
卷期号:7 被引量:70
标识
DOI:10.3389/fncom.2013.00138
摘要

A salient feature of human motor skill learning is the ability to exploit similarities across related tasks. In biological motor control, it has been hypothesized that muscle synergies, coherent activations of groups of muscles, allow for exploiting shared knowledge. Recent studies have shown that a rich set of complex motor skills can be generated by a combination of a small number of muscle synergies. In robotics, dynamic movement primitives are commonly used for motor skill learning. This machine learning approach implements a stable attractor system that facilitates learning and it can be used in high-dimensional continuous spaces. However, it does not allow for reusing shared knowledge, i.e., for each task an individual set of parameters has to be learned. We propose a novel movement primitive representation that employs parametrized basis functions, which combines the benefits of muscle synergies and dynamic movement primitives. For each task a superposition of synergies modulates a stable attractor system. This approach leads to a compact representation of multiple motor skills and at the same time enables efficient learning in high-dimensional continuous systems. The movement representation supports discrete and rhythmic movements and in particular includes the dynamic movement primitive approach as a special case. We demonstrate the feasibility of the movement representation in three multi-task learning simulated scenarios. First, the characteristics of the proposed representation are illustrated in a point-mass task. Second, in complex humanoid walking experiments, multiple walking patterns with different step heights are learned robustly and efficiently. Finally, in a multi-directional reaching task simulated with a musculoskeletal model of the human arm, we show how the proposed movement primitives can be used to learn appropriate muscle excitation patterns and to generalize effectively to new reaching skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CodeCraft应助MES采纳,获得10
3秒前
笨笨乘风完成签到,获得积分10
4秒前
田様应助axunQAQ采纳,获得10
6秒前
完美秋烟发布了新的文献求助10
6秒前
无花果应助糊涂的小伙采纳,获得10
6秒前
白betty完成签到,获得积分10
6秒前
MQ&FF完成签到,获得积分0
7秒前
啦啦啦完成签到,获得积分10
8秒前
9秒前
10秒前
英俊的铭应助小安采纳,获得10
11秒前
12秒前
sun完成签到,获得积分10
12秒前
耍酷的夏云应助勤劳落雁采纳,获得10
14秒前
14秒前
ywang发布了新的文献求助10
14秒前
车秋寒完成签到,获得积分10
14秒前
刘哈哈关注了科研通微信公众号
14秒前
葱饼完成签到 ,获得积分10
15秒前
Anquan完成签到,获得积分10
15秒前
yudandan@CJLU发布了新的文献求助10
16秒前
鱼儿123完成签到,获得积分10
16秒前
端庄的访枫完成签到 ,获得积分10
17秒前
车秋寒发布了新的文献求助10
17秒前
17秒前
完美秋烟完成签到,获得积分10
18秒前
19秒前
21秒前
lee1992完成签到,获得积分10
21秒前
nextconnie发布了新的文献求助10
22秒前
nextconnie发布了新的文献求助10
22秒前
nextconnie发布了新的文献求助10
22秒前
CO2发布了新的文献求助10
23秒前
uniquedl完成签到 ,获得积分10
23秒前
nextconnie发布了新的文献求助10
23秒前
子伊完成签到 ,获得积分10
24秒前
27秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849