Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems

计算机科学 代表(政治) 任务(项目管理) 集合(抽象数据类型) 人工智能 运动学习 仿人机器人 电动机控制 运动(音乐) 吸引子 机器人 政治学 政治 美学 程序设计语言 生物 经济 法学 神经科学 管理 数学 哲学 数学分析
作者
Elmar Rückert,Andrea d’Avella
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media SA]
卷期号:7 被引量:70
标识
DOI:10.3389/fncom.2013.00138
摘要

A salient feature of human motor skill learning is the ability to exploit similarities across related tasks. In biological motor control, it has been hypothesized that muscle synergies, coherent activations of groups of muscles, allow for exploiting shared knowledge. Recent studies have shown that a rich set of complex motor skills can be generated by a combination of a small number of muscle synergies. In robotics, dynamic movement primitives are commonly used for motor skill learning. This machine learning approach implements a stable attractor system that facilitates learning and it can be used in high-dimensional continuous spaces. However, it does not allow for reusing shared knowledge, i.e., for each task an individual set of parameters has to be learned. We propose a novel movement primitive representation that employs parametrized basis functions, which combines the benefits of muscle synergies and dynamic movement primitives. For each task a superposition of synergies modulates a stable attractor system. This approach leads to a compact representation of multiple motor skills and at the same time enables efficient learning in high-dimensional continuous systems. The movement representation supports discrete and rhythmic movements and in particular includes the dynamic movement primitive approach as a special case. We demonstrate the feasibility of the movement representation in three multi-task learning simulated scenarios. First, the characteristics of the proposed representation are illustrated in a point-mass task. Second, in complex humanoid walking experiments, multiple walking patterns with different step heights are learned robustly and efficiently. Finally, in a multi-directional reaching task simulated with a musculoskeletal model of the human arm, we show how the proposed movement primitives can be used to learn appropriate muscle excitation patterns and to generalize effectively to new reaching skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shine发布了新的文献求助10
刚刚
美丽沛容发布了新的文献求助10
1秒前
LokenXie完成签到,获得积分10
2秒前
2秒前
翼静应助西奥采纳,获得10
3秒前
无情的聋五完成签到 ,获得积分10
4秒前
6秒前
yyjw完成签到,获得积分10
6秒前
6秒前
10秒前
火星上的飞鸟完成签到,获得积分10
11秒前
小九的呀完成签到 ,获得积分10
13秒前
14秒前
充电宝应助Asheldon采纳,获得10
14秒前
14秒前
15秒前
Sara发布了新的文献求助10
15秒前
固的曼完成签到,获得积分10
16秒前
17秒前
兴奋的定帮完成签到 ,获得积分10
17秒前
赘婿应助重要的夏槐采纳,获得10
17秒前
17秒前
tY完成签到,获得积分10
19秒前
20秒前
21秒前
hoo发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
shawn发布了新的文献求助10
24秒前
科目三应助上火的小番茄采纳,获得10
25秒前
25秒前
柠小檬c发布了新的文献求助10
25秒前
mark163发布了新的文献求助10
26秒前
KD发布了新的文献求助10
27秒前
骏驰天下发布了新的文献求助10
28秒前
LCXLA完成签到,获得积分10
28秒前
传奇3应助June采纳,获得10
29秒前
大个应助Joker采纳,获得10
29秒前
保安完成签到,获得积分10
31秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277