Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems

计算机科学 代表(政治) 任务(项目管理) 集合(抽象数据类型) 人工智能 运动学习 仿人机器人 电动机控制 运动(音乐) 吸引子 机器人 哲学 法学 程序设计语言 管理 神经科学 经济 政治学 数学分析 美学 政治 生物 数学
作者
Elmar Rückert,Andrea d’Avella
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media]
卷期号:7 被引量:70
标识
DOI:10.3389/fncom.2013.00138
摘要

A salient feature of human motor skill learning is the ability to exploit similarities across related tasks. In biological motor control, it has been hypothesized that muscle synergies, coherent activations of groups of muscles, allow for exploiting shared knowledge. Recent studies have shown that a rich set of complex motor skills can be generated by a combination of a small number of muscle synergies. In robotics, dynamic movement primitives are commonly used for motor skill learning. This machine learning approach implements a stable attractor system that facilitates learning and it can be used in high-dimensional continuous spaces. However, it does not allow for reusing shared knowledge, i.e., for each task an individual set of parameters has to be learned. We propose a novel movement primitive representation that employs parametrized basis functions, which combines the benefits of muscle synergies and dynamic movement primitives. For each task a superposition of synergies modulates a stable attractor system. This approach leads to a compact representation of multiple motor skills and at the same time enables efficient learning in high-dimensional continuous systems. The movement representation supports discrete and rhythmic movements and in particular includes the dynamic movement primitive approach as a special case. We demonstrate the feasibility of the movement representation in three multi-task learning simulated scenarios. First, the characteristics of the proposed representation are illustrated in a point-mass task. Second, in complex humanoid walking experiments, multiple walking patterns with different step heights are learned robustly and efficiently. Finally, in a multi-directional reaching task simulated with a musculoskeletal model of the human arm, we show how the proposed movement primitives can be used to learn appropriate muscle excitation patterns and to generalize effectively to new reaching skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美大神完成签到 ,获得积分10
1秒前
rsdggsrser完成签到 ,获得积分10
1秒前
绿泡泡发布了新的文献求助10
2秒前
4秒前
科研通AI5应助Newt采纳,获得10
4秒前
淡定完成签到,获得积分10
5秒前
文献高手发布了新的文献求助30
6秒前
sbc发布了新的文献求助10
7秒前
小蘑菇应助绿泡泡采纳,获得10
10秒前
GXJ发布了新的文献求助10
11秒前
浪客完成签到 ,获得积分10
13秒前
共享精神应助zyyin采纳,获得10
16秒前
肖治民发布了新的文献求助10
18秒前
18秒前
02ZT完成签到,获得积分10
18秒前
18秒前
19秒前
GXJ完成签到,获得积分20
19秒前
21秒前
22秒前
冬柳发布了新的文献求助10
24秒前
26秒前
逆行的百合完成签到,获得积分10
26秒前
小饭完成签到 ,获得积分10
29秒前
32秒前
pzh完成签到 ,获得积分10
32秒前
32秒前
32秒前
自觉绿草完成签到,获得积分10
34秒前
斯文败类应助小刘采纳,获得10
35秒前
孙燕应助黑色土豆采纳,获得200
35秒前
Zhaoyuemeng完成签到 ,获得积分10
35秒前
肖治民完成签到,获得积分10
37秒前
38秒前
tt发布了新的文献求助10
38秒前
一直向前发布了新的文献求助10
38秒前
jay完成签到,获得积分10
39秒前
和谐的孱完成签到,获得积分10
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190