Adaptive Emotional Information Retrieval From EEG Signals in the Time-Frequency Domain

脑电图 计算机科学 模式识别(心理学) 人工智能 特征提取 频域 支持向量机 语音识别 特征向量 自适应滤波器 分割 希尔伯特-黄变换 滤波器(信号处理) 算法 心理学 计算机视觉 精神科
作者
Panagiotis C. Petrantonakis,Leontios J. Hadjileontiadis
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:60 (5): 2604-2616 被引量:84
标识
DOI:10.1109/tsp.2012.2187647
摘要

This paper aims at developing adaptive methods for electroencephalogram (EEG) signal segmentation in the time-frequency domain, in order to effectively retrieve the emotion-related information within the EEG recordings. Using the multidimensional directed information analysis supported by the frontal brain asymmetry in the case of emotional reaction, a criterion, namely asymmetry index , is used to realize the proposed segmentation processes that take into account both the time and frequency (in the empirical mode decomposition domain) emotionally related EEG components. The efficiency of the -based "emotional" filters was justified through an extensive classification process, using higher-order crossings and cross-correlation as feature-vector extraction techniques and a support vector machine classifier for six different classification scenarios in the valence/arousal space. This resulted in mean classification rates from 64.17% up to 82.91% in a user-independent base, revealing the potential of establishing such a filtering for reliable EEG-based emotion recognition systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着绿草发布了新的文献求助10
1秒前
jixiaoran完成签到,获得积分10
1秒前
2秒前
笑点低关注了科研通微信公众号
3秒前
3秒前
阿坤完成签到 ,获得积分10
5秒前
蓝天应助容若采纳,获得10
5秒前
充电宝应助leez采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
8秒前
小蘑菇应助刘言采纳,获得10
10秒前
10秒前
搞怪山晴发布了新的文献求助10
10秒前
12秒前
JamesPei应助直率的问筠采纳,获得10
13秒前
朻安完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
星辰大海应助黑YA采纳,获得10
15秒前
16秒前
chenhouhan发布了新的文献求助20
16秒前
17秒前
17秒前
leez发布了新的文献求助10
18秒前
哎呦你干嘛完成签到,获得积分20
18秒前
Su发布了新的文献求助10
19秒前
pluto应助独特的绮山采纳,获得10
19秒前
wanci应助星星采纳,获得10
20秒前
20秒前
cetomacrogol完成签到,获得积分10
20秒前
21秒前
感动的小懒虫完成签到,获得积分20
21秒前
21秒前
哈哈哈完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
ybybyb1213发布了新的文献求助30
22秒前
yomi完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595