化学
乙醛
位阻效应
反应性(心理学)
部分
配体(生物化学)
无机化学
激进的
金属
光化学
立体化学
药物化学
乙醇
有机化学
医学
生物化学
替代医学
受体
病理
作者
Dianne J. Xiao,Eric D. Bloch,Jarad A. Mason,Wendy L. Queen,Matthew R. Hudson,Nora Planas,Joshua Borycz,Allison L. Dzubak,Pragya Verma,Kyuho Lee,Francesca Bonino,Valentina Crocellà,Junko Yano,Silvia Bordiga,Donald G. Truhlar,Laura Gagliardi,Craig M. Brown,Jeffrey R. Long
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2014-05-18
卷期号:6 (7): 590-595
被引量:407
摘要
Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.
科研通智能强力驱动
Strongly Powered by AbleSci AI