Combining Contextual and Morphemic Cues Is Beneficial During Incidental Vocabulary Acquisition: Semantic Transparency in Novel Compound Word Processing

语素 词汇 判决 阅读(过程) 理解力 语言学 自然语言处理 心理学 阅读理解 计算机科学 意义(存在) 背景(考古学) 人工智能 心理治疗师 古生物学 哲学 生物
作者
Stephen M. Brusnighan,Jocelyn R. Folk
出处
期刊:Reading Research Quarterly [Wiley]
卷期号:47 (2): 172-190 被引量:59
标识
DOI:10.1002/rrq.015
摘要

Abstract In two studies, we investigated how skilled readers use contextual and morphemic information in the process of incidental vocabulary acquisition during reading. In Experiment 1, we monitored skilled readers’ eye movements while they silently read sentence pairs containing novel and known English compound words that were either semantically transparent (e.g., milkshake, drinkblend ) or opaque (e.g., cocktail , deskdoor ) in informative and neutral sentence contexts. In Experiment 2, we included a postreading vocabulary test following self‐paced reading, which allowed for an examination of word learning success. We found that readers showed processing time advantages for novel transparent compounds in informative contexts, when contextual and morphemic information converged on a meaning. Conversely, these readers showed processing time disadvantages for novel opaque compounds in informative contexts when contextual and morphemic information conflicted as to the interpretation of the novel compound. Postreading vocabulary test performance revealed that readers retained new word meanings after a single exposure, and retention rates were significantly improved as a result of combining contextual and morphemic cues. Further, readers spent more time reading sentences containing novel words for which they subsequently correctly identified the meaning of the novel word. The data suggest that skilled readers automatically decompose novel compound words, that readers’ ability to derive word meanings for novel English compounds is aided by pooling contextual and morphemic sources of information, and that readers’ monitoring of their comprehension when reading texts containing novel words leads to further gains in vocabulary knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yeyeye完成签到,获得积分20
1秒前
1秒前
钱钱发布了新的文献求助10
1秒前
Kim_Hou发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
tovfix完成签到,获得积分10
3秒前
YY-Bubble发布了新的文献求助10
4秒前
故意的乐菱完成签到,获得积分20
4秒前
小符完成签到,获得积分10
4秒前
4秒前
小少发布了新的文献求助10
6秒前
闫伯涵发布了新的文献求助10
6秒前
慕青应助like采纳,获得10
6秒前
7秒前
7秒前
小马完成签到,获得积分10
9秒前
tq发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
12秒前
烟花应助故意的乐菱采纳,获得10
12秒前
小熊炸毛发布了新的文献求助10
13秒前
Lucas应助hcy采纳,获得10
13秒前
Bob发布了新的文献求助10
13秒前
yeyeye发布了新的文献求助10
14秒前
喵总发布了新的文献求助10
15秒前
16秒前
Ther完成签到,获得积分10
18秒前
Lucas应助小符采纳,获得10
18秒前
搜集达人应助李凤杞采纳,获得10
19秒前
大个应助yeyeye采纳,获得10
20秒前
21秒前
彭于晏应助胖呆呆采纳,获得10
21秒前
喵总完成签到,获得积分10
21秒前
22秒前
22秒前
123发布了新的文献求助20
23秒前
酷波er应助闫伯涵采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469408
求助须知:如何正确求助?哪些是违规求助? 4572465
关于积分的说明 14335882
捐赠科研通 4499363
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453554
关于科研通互助平台的介绍 1428085