Multivariate analysis and repeated measurements: A primer

多元方差分析 多元统计 单变量 多元分析 差异(会计) 统计 判别函数分析 计算机科学 重复措施设计 方差分析 线性判别分析 数据挖掘 计量经济学 数学 会计 业务
作者
Thomas E. Rudy,John A. Kubinski,J.R. Boston
出处
期刊:Journal of Critical Care [Elsevier]
卷期号:7 (1): 30-41 被引量:13
标识
DOI:10.1016/0883-9441(92)90006-s
摘要

Most research designs in critical care medicine inherently are multivariate in that experimental manipulations are expected to produce changes on several dependent variables, including measurements repeated over time. Increased availability of easy to use computer programs has made it practical for investigators to benefit from the advantages of multivariate analyses, such as increased control of experiment-wise type I error rates and enhanced interpretation of treatment effects. Researchers need not understand the mathematical underpinnings of these analytic techniques to make good use of them, and it is the practical application of these statistical methods that is addressed in the present paper. The assumptions necessary for appropriate use of multivariate approaches, as well as discussion of the interpretations to be drawn from the information provided by computer programs, are presented. The multivariate analysis of variance (MANOVA) is discussed as an extension of its univariate counterpart, the analysis of variance (ANOVA), with the added advantage of assessing differential treatment effects simultaneously across multiple dependent measurements. Discriminant analysis, including examples of how to interpret discriminant weights and canonical loadings, is presented as a particularly useful method of providing an in-depth and unique representation of the results of a significant MANOVA. Finally, the utility of MANOVA is extended to repeated measurements experimental designs, including how to analyze and interpret designs that involve both between-subjects and within-subjects factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助重要英姑采纳,获得10
2秒前
2秒前
应语海发布了新的文献求助10
2秒前
Yzh完成签到,获得积分10
3秒前
CHEN完成签到,获得积分10
3秒前
jadexuanxuan完成签到,获得积分10
3秒前
王家乐完成签到,获得积分20
3秒前
3秒前
4秒前
益达男友发布了新的文献求助30
4秒前
4秒前
谢谢各位大佬完成签到,获得积分10
5秒前
5秒前
糊涂的尔蝶完成签到,获得积分10
5秒前
5秒前
6秒前
李雨轩发布了新的文献求助10
6秒前
桐桐应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得20
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
苏卿应助junru采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
调研昵称发布了新的文献求助30
8秒前
丘比特应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
陈陈完成签到 ,获得积分10
9秒前
csr发布了新的文献求助10
10秒前
研友_Lmb15n完成签到,获得积分10
10秒前
12秒前
Catch完成签到 ,获得积分10
14秒前
如意大侠完成签到,获得积分10
15秒前
17秒前
17秒前
善学以致用应助王家乐采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905