分类
计算机科学
光学(聚焦)
简单(哲学)
跟踪(教育)
人工智能
帧(网络)
身份(音乐)
视频跟踪
对象(语法)
扩展(谓词逻辑)
联想(心理学)
相似性(几何)
鉴定(生物学)
公制(单位)
机器学习
计算机视觉
图像(数学)
情报检索
工程类
程序设计语言
光学
哲学
物理
心理学
认识论
生物
电信
植物
声学
运营管理
教育学
作者
Nicolai Wojke,Alex Bewley,Dietrich Paulus
出处
期刊:International Conference on Image Processing
日期:2017-09-01
被引量:2277
标识
DOI:10.1109/icip.2017.8296962
摘要
Simple Online and Realtime Tracking (SORT) is a pragmatic approach to multiple object tracking with a focus on simple, effective algorithms. In this paper, we integrate appearance information to improve the performance of SORT. Due to this extension we are able to track objects through longer periods of occlusions, effectively reducing the number of identity switches. In spirit of the original framework we place much of the computational complexity into an offline pre-training stage where we learn a deep association metric on a largescale person re-identification dataset. During online application, we establish measurement-to-track associations using nearest neighbor queries in visual appearance space. Experimental evaluation shows that our extensions reduce the number of identity switches by 45%, achieving overall competitive performance at high frame rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI