作者
Meiying Zeng,Andong Shao,Hui Li,Yan Tang,Qiang Li,Zhiqian Guo,Chungen Wu,Yingsheng Cheng,He Tian,Weihong Zhu
摘要
The inflammatory activity of ulcerative colitis plays an important role in the medical treatment. However, accurate and real-time monitoring of the colitis activity with noninvasive bioimaging method is still challenging, especially in distinguishing between chronic and acute colitis. As a good receptor, the oligopeptide transporter (PepT1) is overexpressed in the colonic epithelial cells of chronic ulcerative colitis, which can deliver tripeptide KPV (Lys-Pro-Val, the C-terminal sequence of α-MSH) into cytosol in the intestine. Herein, we report a PepT1 peptide receptor-targeted fluorescent probe, dicyanomethylene-4H-pyran (DCM)–KPV, with the strategy of conjugating the KPV into the DCM chromophore. The diagnostic fluorescent probe bestows a specific receptor-targeted interaction with PepT1 through the KPV moiety, possessing several beneficial characteristics, such as efficient long emission, low photobleaching, negligible cytotoxicity, and high cytocompatibility in living cells. We build the overexpressed PepT1 on the cytomembrane of ulcerative colitis model Caco-2 cell as the efficient receptor to accumulate the targeted tripeptide KPV in the cytoplasm and nucleus. With the co-localization of DCM–KPV and the DNA-specific fluorophore, DAPI, the specifically long emission from chromophore DCM and efficient receptor-targeted peptide KPV, the fluorescent probe of DCM–KPV makes a breakthrough to the direct noninvasive observation of the accumulation in colon inflammation regions via intestinal mucosa, even successfully distinguishing the chronic, acute ulcerative colitis and normal groups. Compared with the traditional unenhanced magnetic resonance imaging and hematoxylin and eosin (H&E) staining, we make full use of exploiting the specific target–receptor interaction between the tripeptide unit, KPV, and the oligopeptide transporter, PepT1, for sensing selectivity. The desirable diagnostic ability of DCM–KPV can guarantee the real-time tracking and visualization of the role of intracellular KPV on ulcerative colitis, which provides an alternative to replace the time-consuming and tissue sampling-invasive H&E staining diagnosis.