Geometrical-Site-Dependent Catalytic Activity of Ordered Mesoporous Co-Based Spinel for Benzene Oxidation: In Situ DRIFTS Study Coupled with Raman and XAFS Spectroscopy

催化作用 化学 X射线吸收精细结构 拉曼光谱 介孔材料 材料科学 无机化学 尖晶石 氧烷 扩展X射线吸收精细结构 吸收光谱法 光谱学 有机化学 光学 物理 量子力学 冶金
作者
Xiuyun Wang,Liu Yi,Tianhua Zhang,Yongjin Luo,Zhixin Lan,Kai Zhang,Jiachang Zuo,Lilong Jiang,Ruihu Wang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:7 (3): 1626-1636 被引量:366
标识
DOI:10.1021/acscatal.6b03547
摘要

Co3O4 spinel has been widely investigated as a promising catalyst for the oxidation of volatile organic compounds (VOCs). However, the roles of tetrahedrally coordinated Co2+ sites (Co2+Td) and octahedrally coordinated Co3+ sites (Co3+Oh) still remain elusive, because their oxidation states are strongly influenced by the local geometric and electronic structures of the cobalt ion. In this work, we separately studied the geometrical-site-dependent catalytic activity of Co2+ and Co3+ in VOC oxidation on the basis of a metal ion substitution strategy, by substituting Co2+ and Co3+ with inactive or low-active Zn2+(d0), Al3+(d0), and Fe3+(d5), respectively. Raman spectroscopy, X-ray absorption fine structure (XAFS), and in situ DRIFTS spectra were thoroughly applied to elucidate the active sites of a Co-based spinel catalyst. The results demonstrate that octahedrally coordinated Co2+ sites (Co2+Oh) are more easily oxidized to Co3+ species in comparison to Co2+Td, and Co3+ are responsible for the oxidative breakage of the benzene rings to generate the carboxylate intermediate species. CoO with Co2+Oh and ZnCo2O4 with Co3+Oh species have demonstrated good catalytic activity and high TOFCo values at low temperature. Benzene conversions for CoO and ZnCo2O4 are greater than 50% at 196 and 212 °C, respectively. However, CoAl2O4 with Co2+Td sites shows poor catalytic activity and a low TOFCo value. In addition, ZnCo2O4 exhibits good durability at 500 °C and strong H2O resistance ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
help3q完成签到,获得积分10
1秒前
llh发布了新的文献求助10
1秒前
赘婿应助暮商零七采纳,获得10
1秒前
2秒前
怡然冷安完成签到,获得积分10
2秒前
2秒前
哈哈哈完成签到,获得积分10
2秒前
秋去去完成签到,获得积分10
3秒前
希望天下0贩的0应助Towne采纳,获得10
3秒前
4秒前
4秒前
李健应助CJN采纳,获得10
4秒前
lily完成签到,获得积分20
5秒前
流云发布了新的文献求助10
5秒前
April完成签到 ,获得积分10
5秒前
清秀橘子完成签到,获得积分10
5秒前
mika完成签到,获得积分10
5秒前
wuliumu完成签到,获得积分10
5秒前
6秒前
6秒前
lizhoukan1完成签到,获得积分10
6秒前
李爱国应助whisper采纳,获得10
6秒前
7秒前
李爱国应助Rgly采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
张靖松完成签到 ,获得积分10
10秒前
Owen应助雨碎寒江采纳,获得10
10秒前
10秒前
10秒前
皮老八发布了新的文献求助10
10秒前
Planck发布了新的文献求助10
11秒前
苹果绿发布了新的文献求助10
11秒前
11秒前
11秒前
惊鸿客完成签到,获得积分10
11秒前
LHL发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386