Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker

神经影像学 人工智能 心理学 灰质 深度学习 白质 计算机科学 卷积神经网络 医学 磁共振成像 神经科学 放射科
作者
James H. Cole,Rudra P. K. Poudel,Dimosthenis Tsagkrasoulis,Matthan W.A. Caan,Claire J. Steves,Tim D. Spector,Giovanni Montana
出处
期刊:NeuroImage [Elsevier]
卷期号:163: 115-124 被引量:723
标识
DOI:10.1016/j.neuroimage.2017.07.059
摘要

Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people. Deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of 'brain-predicted age' as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a heritable phenotype for all models and input data (h2 ≥ 0.5). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90-0.99). Multi-centre reliability was more variable within high ICCs for GM (0.83-0.96) and poor-moderate levels for WM and raw data (0.51-0.77). Brain-predicted age represents an accurate, highly reliable and genetically-influenced phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助田123采纳,获得10
刚刚
刚刚
牛又亦发布了新的文献求助10
1秒前
2秒前
ss发布了新的文献求助30
3秒前
hi小豆发布了新的文献求助10
5秒前
李健的小迷弟应助颜沛文采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
风中垣完成签到,获得积分10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
迢迢笙箫应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
NexusExplorer应助MLi采纳,获得10
9秒前
9秒前
9秒前
华仔应助Lalala采纳,获得10
10秒前
11秒前
星星完成签到,获得积分20
13秒前
颜沛文发布了新的文献求助10
13秒前
14秒前
14秒前
翻翻发布了新的文献求助10
14秒前
14秒前
乔乔发布了新的文献求助10
14秒前
所所应助R喻andom采纳,获得10
15秒前
关山月发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721