Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker

神经影像学 人工智能 心理学 灰质 深度学习 白质 计算机科学 卷积神经网络 医学 磁共振成像 神经科学 放射科
作者
James H. Cole,Rudra P. K. Poudel,Dimosthenis Tsagkrasoulis,Matthan W.A. Caan,Claire J. Steves,Tim D. Spector,Giovanni Montana
出处
期刊:NeuroImage [Elsevier BV]
卷期号:163: 115-124 被引量:723
标识
DOI:10.1016/j.neuroimage.2017.07.059
摘要

Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people. Deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of 'brain-predicted age' as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a heritable phenotype for all models and input data (h2 ≥ 0.5). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90-0.99). Multi-centre reliability was more variable within high ICCs for GM (0.83-0.96) and poor-moderate levels for WM and raw data (0.51-0.77). Brain-predicted age represents an accurate, highly reliable and genetically-influenced phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的山晴完成签到,获得积分10
刚刚
audodo发布了新的文献求助10
1秒前
zjmsb发布了新的文献求助10
1秒前
yy完成签到,获得积分10
1秒前
bjbbh完成签到,获得积分10
2秒前
研友_VZG7GZ应助hhh采纳,获得10
2秒前
2秒前
2秒前
zhang发布了新的文献求助30
2秒前
2秒前
2秒前
4秒前
爱学习的瑞瑞子完成签到,获得积分10
4秒前
大佬发布了新的文献求助20
5秒前
5秒前
yizhi猫完成签到,获得积分20
5秒前
苦哈哈发布了新的文献求助10
5秒前
Alex完成签到,获得积分10
6秒前
矮小的珠发布了新的文献求助10
6秒前
7秒前
bb发布了新的文献求助10
7秒前
朱建军应助178181采纳,获得10
7秒前
wssamuel完成签到 ,获得积分10
8秒前
8秒前
8秒前
香蕉醉山发布了新的文献求助30
9秒前
9秒前
不太想学习完成签到 ,获得积分10
9秒前
汉堡包应助Threeeeeee采纳,获得10
10秒前
Akim应助简单山水采纳,获得10
10秒前
10秒前
10秒前
10秒前
心灵美从寒完成签到,获得积分10
11秒前
11秒前
audodo完成签到,获得积分20
11秒前
12秒前
宇清完成签到,获得积分10
12秒前
青梅发布了新的文献求助10
12秒前
斯文败类应助zjmsb采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061