亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker

神经影像学 人工智能 心理学 灰质 深度学习 白质 相关性 计算机科学 卷积神经网络 机器学习 模式识别(心理学) 医学 磁共振成像 神经科学 数学 放射科 几何学
作者
James H. Cole,Rudra P. K. Poudel,Dimosthenis Tsagkrasoulis,Matthan W.A. Caan,Claire J. Steves,Tim D. Spector,Giovanni Montana
出处
期刊:NeuroImage [Elsevier]
卷期号:163: 115-124 被引量:842
标识
DOI:10.1016/j.neuroimage.2017.07.059
摘要

Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people. Deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of 'brain-predicted age' as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a heritable phenotype for all models and input data (h2 ≥ 0.5). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90-0.99). Multi-centre reliability was more variable within high ICCs for GM (0.83-0.96) and poor-moderate levels for WM and raw data (0.51-0.77). Brain-predicted age represents an accurate, highly reliable and genetically-influenced phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
KKK完成签到,获得积分10
7秒前
大模型应助KKK采纳,获得10
14秒前
15秒前
16秒前
沿途有你完成签到 ,获得积分10
18秒前
劉浏琉完成签到,获得积分10
19秒前
DrN发布了新的文献求助10
19秒前
25秒前
27秒前
29秒前
hyhyhyhy完成签到,获得积分10
29秒前
hyhyhyhy发布了新的文献求助10
32秒前
ctttt完成签到 ,获得积分10
37秒前
科研通AI6应助hyhyhyhy采纳,获得10
40秒前
41秒前
42秒前
ding应助hyhyhyhy采纳,获得10
52秒前
57秒前
炙心完成签到,获得积分10
57秒前
子平完成签到 ,获得积分0
59秒前
炙心发布了新的文献求助10
1分钟前
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
小马甲应助Yuuw采纳,获得10
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
nini完成签到,获得积分10
1分钟前
张元东完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
淡淡土豆应助Nomb1采纳,获得10
2分钟前
浮游应助Nomb1采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509411
求助须知:如何正确求助?哪些是违规求助? 4604320
关于积分的说明 14489649
捐赠科研通 4539087
什么是DOI,文献DOI怎么找? 2487289
邀请新用户注册赠送积分活动 1469742
关于科研通互助平台的介绍 1441992