化学
核糖核酸
DNA
核酸
质谱法
甲酰化
电喷雾电离
色谱法
串联质谱法
生物化学
分子生物学
基因
催化作用
生物
作者
Han-Peng Jiang,Бо Лю,Ning Guo,L. Yu,Bi‐Feng Yuan,Yu‐Qi Feng
标识
DOI:10.1016/j.aca.2017.06.009
摘要
Nucleic acids carry diverse chemical modifications that exert critical influences in a variety of cellular processes in living organisms. In addition to methylation, the emerging DNA and RNA formylation has been reported to play functional roles in various physiological processes. However, the amounts of formylated DNA and RNA are extremely low and detection of DNA and RNA formylation is therefore a challenging task. To address this issue, we developed a strategy by chemical labeling combined with in-tube solid-phase microextraction - ultra high performance liquid chromatography - electrospray ionization - tandem mass spectrometry (in-tube SPME-UPLC-ESI-MS/MS) analysis for the sensitive determination of DNA and RNA formylation. Using the developed method, we were able to simultaneously measure six formylated nucleosides, including 5-formyl-2'-deoxycytidine (5-fodC), 5-formylcytidine (5-forC), 5-formyl-2'-deoxyuridine (5-fodU), 5-formyluridine (5-forU), 2'-O-methyl-5-formylcytidine (5-forCm) and 2'-O-methyl-5- formyluridine (5-forUm), from DNA and RNA of cultured human cells and multiple mammalian tissues. The detection limits of these formylated nucleosides improved by 307-884 folds using Girard's P (GirP) labeling coupled with in-tube SPME-UPLC-ESI-MS/MS analysis. It was worth noting that 5-forU, 5-forCm and 5-forUm which have not been detected in human sample before, were discovered in cultured human cells and tissues in the current study. In addition, we observed significant increase of 5-forC and 5-forU in RNA (p = 0.027 for 5-forC; p = 0.028 for 5-forU) and 5-fodU in DNA (p = 0.002) in human thyroid carcinoma tissues compared to normal tissues adjacent to the tumor using synthesized stable isotope GirP (d5-GirP)-assisted quantification. Our results indicated that aberrant DNA and RNA formylation may contribute to the tumor formation and development. In addition, monitoring of DNA and RNA formylation may also serve as indicator for cancer diagnostics. Taken together, the developed chemical labeling combined with in-tube SPME-UPLC-ESI-MS/MS analysis can facilitate the in-depth functional study of DNA and RNA formylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI