A Senescence-Centric View of Aging: Implications for Longevity and Disease

生物 长寿 衰老 促炎细胞因子 机制(生物学) 细胞衰老 细胞生物学 神经科学 免疫学 炎症 遗传学 基因 表型 哲学 认识论
作者
Michela Borghesan,Willem M.H. Hoogaars,Marta Varela-Eirín,Nynke Talma,Marco Demaria
出处
期刊:Trends in Cell Biology [Elsevier BV]
卷期号:30 (10): 777-791 被引量:213
标识
DOI:10.1016/j.tcb.2020.07.002
摘要

There is increasing evidence of the detrimental role of senescent cells in aging. Clearance of senescent cells has been shown to improve age-associated pathologies in animal models, leading to promising new clinical trials. Different mechanisms of senescent cells can be exploited pharmacologically to develop new therapeutic targets. Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments. Cellular senescence is a state of stable cell cycle arrest associated with macromolecular alterations and secretion of proinflammatory cytokines and molecules. From their initial discovery in the 1960s, senescent cells have been hypothesized as potential contributors to the age-associated loss of regenerative potential. Here, we discuss recent evidence that implicates cellular senescence as a central regulatory mechanism of the aging process. We provide a comprehensive overview of age-associated pathologies in which cellular senescence has been implicated. We describe mechanisms by which senescent cells drive aging and diseases, and we discuss updates on exploiting these mechanisms as therapeutic targets. Finally, we critically analyze the use of senotherapeutics and their translation to the clinic, highlighting limitations and suggesting ideas for future applications and developments. diseases whose incidence increases with aging, most of them sharing an inflammatory pathogenesis and correlating with increased levels of cell senescence. molecular and cellular damage accumulation over time leading to a progressive decline in physical and mental capacity, and to an increased risk for disease and death. programmed and controlled cell death that regulates growth, development, tissue homeostasis, and tumor suppression. heterogeneous cell state in response to different stress stimuli, characterized by stable cell cycle arrest, as well as morphological, structural, and functional changes, including enhanced expression and secretion of proinflammatory mediators. clinical syndrome observed in older adults that predispose to poor health, onset and progression of diseases and decreased capacity to cope with cellular and tissue stress. conversion from reversible cell cycle arrest (quiescence) to irreversible cell cycle arrest (senescence). period of life where an individual has good health, free of disabilities and diseases. gradual age-associated functional decline of the immune system, especially of the adaptative immune system, that contributes to increased risk of morbidity and mortality. low-grade chronic inflammation, not induced by pathogens, causing higher risk of morbidity and mortality in elderly. measure of populations average survival time between birth and death. cellular senescence originated from dysfunctional mitochondria, likely as a result of the accumulation of ROS. regulated degradation of dysfunctional mitochondria by autophagy. cellular senescence originated in a non-cell autonomous manner via SASP factors secreted by neighboring senescent cells. syndrome or phenotype mimicking premature aging. robust and heterogeneous secretion of soluble modulators by senescent cells, including cytokines, chemokines, growth factors, proteases, and EVs. molecules and strategies that target cellular senescence, which can be classified as senolytics (selective elimination of senescent cells via programmed cell death) and senomorphics/senostatics (modulation of senescence-associated phenotypes without senolysis).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhusy发布了新的文献求助10
刚刚
充电宝应助牂牂采纳,获得10
刚刚
浮游应助浪子采纳,获得10
1秒前
共享精神应助乐融融1采纳,获得10
1秒前
学术小白发布了新的文献求助10
1秒前
2秒前
无花果应助spring采纳,获得10
2秒前
YY完成签到,获得积分10
3秒前
4秒前
Jasper应助跳跃的静曼采纳,获得10
4秒前
hy完成签到,获得积分10
5秒前
5秒前
6秒前
冷艳访枫完成签到,获得积分10
6秒前
Lucien完成签到,获得积分10
6秒前
7秒前
7秒前
景行行止发布了新的文献求助10
7秒前
kk完成签到 ,获得积分10
8秒前
领导范儿应助嘉平三十采纳,获得10
8秒前
9秒前
真的橘子发布了新的文献求助20
9秒前
搜集达人应助学术小白采纳,获得10
10秒前
10秒前
eddie发布了新的文献求助10
11秒前
古木发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助郑嘻嘻采纳,获得10
12秒前
orixero应助123456采纳,获得10
12秒前
石烟祝完成签到,获得积分10
13秒前
13秒前
酷波er应助不建在的牛马采纳,获得10
13秒前
tianzuo发布了新的文献求助10
14秒前
14秒前
andy完成签到,获得积分20
15秒前
烟雨夕阳发布了新的文献求助10
15秒前
Akim应助tonyfountain采纳,获得10
15秒前
凯特完成签到,获得积分10
15秒前
15秒前
Zing发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636