胆碱氧化酶
化学
啶虫脒
检出限
乙酰胆碱酯酶
酶
过氧化氢
残留物(化学)
色谱法
生物化学
杀虫剂
益达胺
农学
生物
作者
Long Wu,Min Zhou,Chen Liu,Xiaoqiang Chen,Yiping Chen
标识
DOI:10.1016/j.jhazmat.2020.123619
摘要
It is a great challenge to develop a newly rapid and accurate detection method for pesticide residues. In this work, based on acetylcholinesterase (AChE) and choline oxidase (CHO), a double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch was explored for the measurement of acetamiprid residue. In the double-enzymes reactions, acetylcholine chloride (ACh) can be catalyzed to produce choline by AChE, which is successively hydrolyzed to betaine and hydrogen peroxide (H2O2) by CHO. According to the enzyme inhibition principle, AChE activity will be inactivated in the presence of acetamiprid, thus leading to the less production of H2O2. Wherein, Fe2+, ACh, AChE and CHO were optimized as the reaction substrates. In the reaction system, acetamiprid can be reflected by the transverse relaxation time (T2) that related with H2O2 mediated Fe2+ variations, which was further developed as an enzyme cascade amplification method. The detection linear range is 0.01∼1000 μg mL−1 (R2 = 0.99), and the limit of detection (LOD) is 2.66 ng mL−1 (S/N = 3, n = 3), behaving a 335-fold improvement in LOD than that of traditional enzyme inhibition method (0.89 μg mL−1). This method can realize “one-step mixing” detection of acetamiprid, which makes it a promising analytical tool for monitoring pesticide residue in complicated samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI