Rolling Element Bearing Fault Diagnosis Using Compressed Sensing and Convolutional Neural Network

计算机科学 压缩传感 卷积神经网络 断层(地质) 卷积(计算机科学) 特征提取 方位(导航) 人工智能 人工神经网络 模式识别(心理学) 滚动轴承 状态监测 信号(编程语言) 信息抽取 数据挖掘 工程类 地质学 地震学 物理 振动 程序设计语言 电气工程 量子力学
作者
Jiwang Zhang,Keqin Ding
标识
DOI:10.12783/shm2019/32413
摘要

Rolling bearing is one of the most commonly used components in rotating machinery. It's so easy to be damaged that it can cause mechanical fault. Therefore, it is of great significance for its condition monitoring and fault diagnosis. However, the traditional diagnosis methods still suffer from two problems, which are (1) the information density of the monitoring data is low because of huge monitoring data amount, and (2) the requirements of domain expertise and prior knowledge for sensitive feature extraction. Aiming at above problems, a new diagnosis method based on compressed sensing (CS) and convolution neural network (CNN) is proposed in this paper. The method consists of three key steps. First, the original monitoring signals are converted into compressed sensing domain for reducing data amount and improving its information density by using compressed sensing method. Second, the compressed signal is used as the input of the convolution neural network to extract sensitive features adaptively, and to realize the fault intelligence diagnosis. Finally, several groups of experiments are carried out to validate the feasibility of the proposed method in this paper, and the diagnostic accuracy achieves 93.7%, which is far higher than the traditional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘎嘎嘎嘎发布了新的文献求助10
刚刚
科研小班发布了新的文献求助10
刚刚
传奇3应助胡兴采纳,获得10
刚刚
754完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
Lotus完成签到,获得积分10
2秒前
期待完成签到,获得积分10
2秒前
yang完成签到,获得积分10
3秒前
3秒前
叽里咕噜发布了新的文献求助10
4秒前
幸运星完成签到 ,获得积分10
4秒前
阿嘎本完成签到,获得积分10
4秒前
光光发电完成签到,获得积分10
4秒前
大漠配孤烟完成签到,获得积分10
4秒前
小二郎应助奋斗蚂蚁采纳,获得10
5秒前
YYY666完成签到,获得积分10
5秒前
伶俐从筠应助羊踯躅采纳,获得10
5秒前
碧蓝紫青发布了新的文献求助30
5秒前
小豆子发布了新的文献求助10
6秒前
6秒前
鲁大师完成签到,获得积分10
7秒前
SciGPT应助旺仔牛奶糖采纳,获得10
7秒前
波特卡斯D艾斯完成签到 ,获得积分10
8秒前
8秒前
8秒前
陈冠希给陈冠希的求助进行了留言
8秒前
8秒前
蛋蛋发布了新的文献求助10
9秒前
明天肯定学习完成签到,获得积分10
9秒前
9秒前
贾小闲完成签到,获得积分10
9秒前
g0123完成签到,获得积分10
10秒前
大个应助镜羽采纳,获得10
10秒前
晓海发布了新的文献求助10
10秒前
ZZzz完成签到 ,获得积分10
12秒前
12秒前
闪闪幼南完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307802
求助须知:如何正确求助?哪些是违规求助? 2941301
关于积分的说明 8502750
捐赠科研通 2615835
什么是DOI,文献DOI怎么找? 1429200
科研通“疑难数据库(出版商)”最低求助积分说明 663673
邀请新用户注册赠送积分活动 648644