计算机科学
人工智能
联营
判别式
模式识别(心理学)
鉴定(生物学)
水准点(测量)
特征提取
特征(语言学)
卷积神经网络
地图学
地理
语言学
植物
生物
哲学
作者
Le Wang,Rizhi Ding,Yuanhao Zhai,Qilin Zhang,Wei Tang,Nanning Zheng,Gang Hua
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2021-01-01
卷期号:30: 2837-2849
被引量:11
标识
DOI:10.1109/tip.2021.3055627
摘要
The lack of automatic tools to identify giant panda makes it hard to keep track of and manage giant pandas in wildlife conservation missions. In this paper, we introduce a new Giant Panda Identification (GPID) task, which aims to identify each individual panda based on an image. Though related to the human re-identification and animal classification problem, GPID is extraordinarily challenging due to subtle visual differences between pandas and cluttered global information. In this paper, we propose a new benchmark dataset iPanda-50 for GPID. The iPanda-50 consists of 6, 874 images from 50 giant panda individuals, and is collected from panda streaming videos. We also introduce a new Feature-Fusion Network with Patch Detector (FFN-PD) for GPID. The proposed FFN-PD exploits the patch detector to detect discriminative local patches without using any part annotations or extra location sub-networks, and builds a hierarchical representation by fusing both global and local features to enhance the inter-layer patch feature interactions. Specifically, an attentional cross-channel pooling is embedded in the proposed FFN-PD to improve the identify-specific patch detectors. Experiments performed on the iPanda-50 datasets demonstrate the proposed FFN-PD significantly outperforms competing methods. Besides, experiments on other fine-grained recognition datasets (i.e., CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that the proposed FFN-PD outperforms existing state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI