Feasibility of Continual Deep Learning-Based Segmentation for Personalized Adaptive Radiation Therapy in Head and Neck Area

分割 人工智能 头颈部 Sørensen–骰子系数 稳健性(进化) 头颈部癌 核医学 放射治疗 医学 计算机科学 试验装置 计算机视觉 图像分割 放射科 外科 化学 基因 生物化学
作者
Nalee Kim,Jaehee Chun,Jee Suk Chang,Chang Geol Lee,Ki Chang Keum,Jin Sung Kim
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:13 (4): 702-702 被引量:27
标识
DOI:10.3390/cancers13040702
摘要

This study investigated the feasibility of deep learning-based segmentation (DLS) and continual training for adaptive radiotherapy (RT) of head and neck (H&N) cancer. One-hundred patients treated with definitive RT were included. Based on 23 organs-at-risk (OARs) manually segmented in initial planning computed tomography (CT), modified FC-DenseNet was trained for DLS: (i) using data obtained from 60 patients, with 20 matched patients in the test set (DLSm); (ii) using data obtained from 60 identical patients with 20 unmatched patients in the test set (DLSu). Manually contoured OARs in adaptive planning CT for independent 20 patients were provided as test sets. Deformable image registration (DIR) was also performed. All 23 OARs were compared using quantitative measurements, and nine OARs were also evaluated via subjective assessment from 26 observers using the Turing test. DLSm achieved better performance than both DLSu and DIR (mean Dice similarity coefficient; 0.83 vs. 0.80 vs. 0.70), mainly for glandular structures, whose volume significantly reduced during RT. Based on subjective measurements, DLS is often perceived as a human (49.2%). Furthermore, DLSm is preferred over DLSu (67.2%) and DIR (96.7%), with a similar rate of required revision to that of manual segmentation (28.0% vs. 29.7%). In conclusion, DLS was effective and preferred over DIR. Additionally, continual DLS training is required for an effective optimization and robustness in personalized adaptive RT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
元芥发布了新的文献求助30
刚刚
SYLH应助内向友桃采纳,获得10
1秒前
今后应助内向友桃采纳,获得10
1秒前
科研通AI2S应助内向友桃采纳,获得10
1秒前
番茄不酸应助内向友桃采纳,获得10
1秒前
科研通AI2S应助内向友桃采纳,获得10
1秒前
YYDS54完成签到,获得积分10
1秒前
好好完成签到,获得积分20
1秒前
1秒前
和谐一一发布了新的文献求助10
1秒前
2秒前
Yulin Yu发布了新的文献求助10
2秒前
王大禹发布了新的文献求助10
2秒前
3秒前
科目三应助hlc采纳,获得10
3秒前
赘婿应助蒋念寒采纳,获得10
4秒前
4秒前
善学以致用应助李梦琦采纳,获得10
4秒前
4秒前
zzz发布了新的文献求助10
5秒前
6秒前
关关完成签到 ,获得积分10
6秒前
6秒前
7秒前
好好发布了新的文献求助10
7秒前
7秒前
HanlinLiu发布了新的文献求助10
8秒前
8秒前
Yulin Yu完成签到,获得积分10
8秒前
bkagyin应助眼睛大眼睛采纳,获得10
8秒前
FashionBoy应助简单面包采纳,获得10
9秒前
36456657应助里昂采纳,获得20
9秒前
9秒前
xhtt完成签到,获得积分10
9秒前
zydd发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
syq发布了新的文献求助10
11秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Cardiac arrhythmia classification of imbalanced data using convolutional autoencoder and LSTM techniques 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702554
求助须知:如何正确求助?哪些是违规求助? 3252352
关于积分的说明 9879214
捐赠科研通 2964416
什么是DOI,文献DOI怎么找? 1625662
邀请新用户注册赠送积分活动 770185
科研通“疑难数据库(出版商)”最低求助积分说明 742869