A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability

耐久性 输运现象 渗透 质子交换膜燃料电池 扩散 生化工程 材料科学 化学 工程类 机械 热力学 物理 复合材料 生物化学
作者
Mingzhang Pan,Chengjie Pan,Chao Li,Jian Zhao
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:141: 110771-110771 被引量:220
标识
DOI:10.1016/j.rser.2021.110771
摘要

Membrane is one of the most important components in proton exchange membrane fuel cells (PEMFCs), which determines the transport phenomena, performance, and durability. With the rapid development of novel membranes, many transport coefficients in membranes applied in numerical studies are outdated due to the lack of experimental data for new membranes. In this review, the fundamentals of commercially available membranes are scrutinized, followed by the fundamental working mechanisms. A detailed examination of the transport phenomena within the membranes, including transport mechanisms, mathematical description, and experimental methods, is conducted for protonic conduction, electro-osmosis drag, diffusion, hydraulic permeation, and gas crossover, which are urgently needed for theoretical and numerical studies. It is found that various empirical or analytical correlations have been established to predict the transport coefficients of the membranes. However, empirical models may not be accurate for all types of membranes since there is no sufficient experimental data for a solid correlation and validation. The experimental methods reviewed in the present study can be applied for new membranes, which is essential to quantify the transport phenomena and its further impact on cell performance and durability. The key transport-phenomena-related factors that affect the performance and failure modes of membranes are also reviewed in this study, which helps to develop strategies in improving membranes’ performance and durability during operation. This review deepens the understanding of the short-term and long-term performance of the membrane in PEMFCs and provides important insights into the further design of novel membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹筏过海应助chen采纳,获得50
刚刚
刚刚
schoolboy发布了新的文献求助10
刚刚
完美世界应助洛尚采纳,获得10
刚刚
苹果萧发布了新的文献求助10
1秒前
钟是一梦发布了新的文献求助10
2秒前
Lucas应助Light采纳,获得10
3秒前
3秒前
3秒前
李健的粉丝团团长应助Ll采纳,获得10
3秒前
3秒前
JQKing完成签到,获得积分10
4秒前
4秒前
zs完成签到 ,获得积分10
4秒前
4秒前
11完成签到,获得积分20
4秒前
一定会更好的完成签到,获得积分10
5秒前
Pangsj发布了新的文献求助10
5秒前
姆姆完成签到,获得积分10
5秒前
领导范儿应助落晨采纳,获得10
5秒前
6秒前
善良的安卉完成签到,获得积分10
6秒前
淡定吃吃发布了新的文献求助10
7秒前
yyf关闭了yyf文献求助
7秒前
8秒前
kokodayour完成签到,获得积分10
8秒前
Quin完成签到,获得积分10
8秒前
8秒前
冷艳乐松完成签到,获得积分10
9秒前
9秒前
9秒前
诸葛雪兰完成签到,获得积分10
10秒前
洛尚完成签到,获得积分10
10秒前
czq完成签到,获得积分10
10秒前
VVhahaha完成签到,获得积分10
11秒前
limof发布了新的文献求助10
11秒前
12秒前
小葡萄完成签到 ,获得积分10
12秒前
13秒前
wu发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740